研究課題/領域番号 |
06J09705
|
研究種目 |
特別研究員奨励費
|
配分区分 | 補助金 |
応募区分 | 国内 |
研究分野 |
代数学
|
研究機関 | 九州大学 |
研究代表者 |
野崎 寛 九州大学, 大学院・数理学研究院, 特別研究員(PD)
|
研究期間 (年度) |
2006 – 2008
|
研究課題ステータス |
完了 (2008年度)
|
配分額 *注記 |
2,800千円 (直接経費: 2,800千円)
2008年度: 900千円 (直接経費: 900千円)
2007年度: 900千円 (直接経費: 900千円)
2006年度: 1,000千円 (直接経費: 1,000千円)
|
キーワード | 距離集合 / 球面デザイン / アイゼンシュタイン級数 / ユークリッドデザイン / 内積集合 / 保型形式 |
研究概要 |
球面S^d上の有限個の点の集合で、異なる2点間の距離がs種類であるものをs-距離集合と呼ぶ。また、球面のある種の近似を与える有限集合で球面t-デザインという概念がある。球面上の有限個の点の集合を扱うとき、この二つの概念が非常に重要である。s-距離集合の一般化である局所s-距離集合には、ある種の特別な元の個数の上界が示される。その上界を達成する局所距離集合を堅い局所距離集合と呼ぶ。また、球面t-デザインの一般化である重み付き球面t-デザインにもある種の特別な元の個数の下界が知られている。この下界を満たす重み付き球面t-デザインを堅い重み付き球面デザインと呼ぶ。このとき、堅い局所距離集合と堅い重み付き球面デザインに1:1の対応があることを示した。このことから、堅い局所s-距離集合はs-距離集合になっていることが分かる。この結果は、堅い距離集合と堅い球面デザインの対応の拡張になっており、局所距離集合の意義を強調するものとなっている。 sを固定したときに、どれ程多くの点を球面上に配置できるかがs-距離集合の問題である。このとき、元の個数に対する上界が非常に重要である。距離の値を固定したときに、知られている上界を改善する新たな上界を示した。この上界から、ある種の距離集合の非存在を導くことが出来る。Musinの論文では、この上界を効果的に用いて、次元dが小さいところで2-距離集合の元の個数の最大値を決定している。
|