• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

代数曲面の非有理次数の研究

研究課題

研究課題/領域番号 07640025
研究種目

一般研究(C)

配分区分補助金
研究分野 代数学
研究機関新潟大学

研究代表者

吉原 久夫  新潟大学, 理学部, 教授 (60114807)

研究分担者 秋山 茂樹  新潟大学, 理学部, 助教授 (60212445)
竹内 照雄  新潟大学, 理学部, 助教授 (10018848)
関川 浩永  新潟大学, 理学部, 教授 (60018661)
渡部 剛  新潟大学, 理学部, 教授 (60018257)
研究期間 (年度) 1995
研究課題ステータス 完了 (1995年度)
配分額 *注記
2,000千円 (直接経費: 2,000千円)
1995年度: 2,000千円 (直接経費: 2,000千円)
キーワード非有理次数 / アーベル曲面 / 超楕円曲面 / 有理関数体
研究概要

2変数代数関数体についての,非有理次数を求めること,言い替えると,代数曲面Sについての非有理次数d_γ(S)を決定することが目的である。これまでのところ小平次元が負の無限大の曲面と幾つかのアーベル曲面だけしか判明していなかった。当該研究では小平次元が0のクラスのうち,特にアーベル曲面と超楕円曲面について研究した。
1.アーベル曲面AについてはすでにAが主偏極アーベル曲面の不分岐2重被覆となっていれば,d_γ(A)=3と判明していた。この他に大切な例として2つの楕円曲線の積A=E×Eであるときどうかということが問題であった。d_γ(A)=3であるための十分条件として,A上に種数3の非特異曲線が存在することという判定条件を示し,それを用いておよそ次に述べる成果を得た:Eが虚数乗法を持てばA=E×Eの非有理次数は3である。なおこの結果はAがいつ代数曲線のヤコビ多様体になるかという問題を,林田・西氏がA上に種数2の非特異曲線が存在するための条件として考察したが,それと同様な議論の結果得られたものである。
なお非有理次数が4以上の例を見つけようとしたが,今の所成功していない。今後の課題である。
2.超楕円曲面Sについてはd_γ(S)>2ということだけで詳しい値は分かっていなかった。この研究ではSが2つのファイバー空間の構造を持つことに注目し,それぞれのファイバーを用いて因子を作り,有理写像を考察することで非有理次数の評価を試みた。超楕円曲面は諏訪氏の分類表に基づいて,7種類に分類されるが,そのうちの2種はd_γ(S)=2他はd_γ(S)=3,4という成果が得られた。

報告書

(1件)
  • 1995 実績報告書
  • 研究成果

    (2件)

すべて その他

すべて 文献書誌 (2件)

  • [文献書誌] Hisao Yoshihara: "Degree of irrationality of a product of two elliptic curves" Proceedings of the American Mathematical Society.

    • 関連する報告書
      1995 実績報告書
  • [文献書誌] Hisao Yoshihara: "On the degrees of irrationality of hyperelliptic surfaces" Proceedings of the Japan Academy.

    • 関連する報告書
      1995 実績報告書

URL: 

公開日: 1995-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi