• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

代数曲線のモジュライ空間とガロア表現

研究課題

研究課題/領域番号 07640037
研究種目

一般研究(C)

配分区分補助金
研究分野 代数学
研究機関京都大学

研究代表者

伊原 康隆  京都大学, 数理解析研究所, 教授 (70011484)

研究分担者 望月 新一  京都大学, 数理解析研究所, 助手 (10243106)
玉川 安騎男  京都大学, 数理解析研究所, 助手 (00243105)
松本 眞  京都大学, 数理解析研究所, 助手 (70231602)
研究期間 (年度) 1995
研究課題ステータス 完了 (1995年度)
配分額 *注記
2,000千円 (直接経費: 2,000千円)
1995年度: 2,000千円 (直接経費: 2,000千円)
キーワード代数曲線 / ガロア表現 / モジュライ空間 / 基本群
研究概要

種数gの代数曲線のモジュライ空間M_<g,n>(ただしnはマークされた点の個数)の基本群π_1(M_<g,n>)へのガロア群Gal(【.encircledト.】/【.encircledト.】)の作用の研究を進めた(伊原,松本,中村博昭),また数体上の代数曲線は,放物的である限り,その基本群へのガロア群の作用によって一意に定まるのではないか,というグロタンディック予想の解決が得られた(玉川,望月).
まずπ_1(M_<g,n>)へのガロアの作用については,π_1(M_<0,3>)へのそれで完全に定まり後者の量で前者の量が一般に表されることか期待されている.ここでπ_1のかわりにその任者の“pro-と実備化"をとっても同じ事が問題になる.この事実が,伊原-松本,伊原-中村の共同研究を中心とする研究によって,かなり一般のとに対して証明された。方法はM_<g,n>のカスプで極大退化曲線に対応する点の形式近傍のπ_1をグロタンディック-ミュアの基本群の理論等を用いて研究し応用するものである。尚副産物としてFriel-Volkleinモジュライ空間の“安定定義体"への応用がある。
グロタンディック予想については,玉川がアフィン曲線の場合に証明に成功し,その後望月が,はじめ玉川の結果に帰着させる形で,次いでp進Holge理論(というより,Tate理論)を応用することによりP進的方法で,一般の曲線の場合の証明を得た.

報告書

(1件)
  • 1995 実績報告書
  • 研究成果

    (4件)

すべて その他

すべて 文献書誌 (4件)

  • [文献書誌] 伊原康隆(中村博昭と共著): "On deformations of maximally degenerate stable markecl curues and ocla′s problcm." RIMS-1012(1995). (投稿中).

    • 関連する報告書
      1995 実績報告書
  • [文献書誌] 玉川安騎男: "The Grothendieck conjecture for affine curves" RIMS-1064(1996). (投稿中).

    • 関連する報告書
      1995 実績報告書
  • [文献書誌] 望月新一: "The profinite Grothendieck conjecture for closod hyperbolic cures over number fields" RIMS-1044(1995). (投稿中).

    • 関連する報告書
      1995 実績報告書
  • [文献書誌] 望月新一: "The local pro-p Grothendiock conjecture for hyperbolic curves" RIMS-1045(1995). (投稿中).

    • 関連する報告書
      1995 実績報告書

URL: 

公開日: 1995-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi