• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

局所環のスペクトラムでの交点理論の研究

研究課題

研究課題/領域番号 07740039
研究種目

奨励研究(A)

配分区分補助金
研究分野 代数学
研究機関東京都立大学

研究代表者

蔵野 和彦  東京都立大学, 理学部, 助教授 (90205188)

研究期間 (年度) 1995
研究課題ステータス 完了 (1995年度)
配分額 *注記
900千円 (直接経費: 900千円)
1995年度: 900千円 (直接経費: 900千円)
キーワードリーマン・ロッホ / スキーム / Gorenstein 環 / サイクル / Chow群
研究概要

論文リストにあるTohoku Math.J.に掲載予定の論文(A remark on the Riemann-Roch formula…)の中で次の様なことがわかった。
体上のsmoothな代数多様体のアフィン・コーンの原点での局所環AのスペクトラムSpecA上で、特異スキーム上でのリーマン・ロッホの定理で出てくるリーマン・ロッホ写像τSpecAでのサイクル[A]の像(SpecAのChow群の元)を具体的に記述する方法を見つけた。一般のネーター局所環B上で、Bが完全交差であれば、サイクル[B]のリーマン・ロッホ写像τSpecBによる像は、SpecBのChow群の中のサイクル[SpecB]に一致することが知られているが、BがCohen-Macaulay環であるときは、必ずしもそれは成立しない。とすると、BがGorenstein環であるときに、それは成立するかが、一つの疑問として出てくる。しかし、私の結果より、AがGorenstein環であるが、τSpecA([A])が[SpecA]と一致しない例を構成することができる。特異スキーム上のリーマン・ロッホ写像の計算は大変むずかしいのであるが、この結果により、計算可能な例がいくつも見つかるのである。
今年、目標としていたDutta multiplicityの正値性は証明できていないが、上の結果は、リーマン・ロッホ写像を解析する上で重要なものであるといえる。

報告書

(1件)
  • 1995 実績報告書
  • 研究成果

    (1件)

すべて その他

すべて 文献書誌 (1件)

  • [文献書誌] K.Kurano: "A remark on the Riemann-Roch formula on affine schemes associated wiht Noetherian local rings" Tohok Math.J.48(発表予定). (1996)

    • 関連する報告書
      1995 実績報告書

URL: 

公開日: 1995-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi