• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

巡回コホモロジー群による指数定理の一般化の研究

研究課題

研究課題/領域番号 07740051
研究種目

奨励研究(A)

配分区分補助金
研究分野 幾何学
研究機関北海道大学

研究代表者

森吉 仁志  北海道大学, 大学院・理学研究科, 助教授 (00239708)

研究期間 (年度) 1995
研究課題ステータス 完了 (1995年度)
配分額 *注記
800千円 (直接経費: 800千円)
1995年度: 800千円 (直接経費: 800千円)
キーワード巡回コホモロジー / K-理論 / 指数定理 / Godbillon-Vey類
研究概要

本研究では、Connesによる非可換微分幾何の枠組に基いてAtiyah-Singerの指数定理を捉え直すことを目的とした。特に、葉層束に関して二次特性類が関与する巡回コサイクルを構成すること、およびこのような巡回コサイクルとK-群の元との対合を考察しAtiyah-Singerの指数定理の一般化を導くことに研究の重点をおき、さらに主要な実例に現れるこのような巡回コサイクルに関して、無限次元の等質空間の不変微分型式(例えば1次元球面の微分同相群の等質空間あるいは無限次元グラスマン多様体上のシンプレクティック型式)との関連性を考察した。またK-群や巡回コホモロジー理論とSpectral flowやEta-invariantといった解析的二次不変量と二次特性類が関与する精密化された指数定理に関する考察もおこなった。
本年度における具体的な結果としては、S^1の場合についての主要な二次特性類であるGodbillon-Vey類に対するAtiyah-Singerの指数定理の一般化(これはProceedings of“Geometric Study of Foliation"(1994)に掲載された昨年度の研究結果と前後して密接に関連する)が得られた。これは閉曲面上の葉層S^1束に対するGodbillon-Vey数が、非可換微分幾何における「曲率」と考えられることを示しており、本研究の目的に照らして満足すべきものと思われる。この結果はPacific Jurnal誌に掲載予定である。

報告書

(1件)
  • 1995 実績報告書
  • 研究成果

    (1件)

すべて その他

すべて 文献書誌 (1件)

  • [文献書誌] H.Moriyoshi and T.Natsume: "The Godbillon-Vey cyclic cocycle and longitudinal Dimc operators" Pacific Journal of Mathematics. (in press). (1996)

    • 関連する報告書
      1995 実績報告書

URL: 

公開日: 1995-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi