• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

ケーラー磁場

研究課題

研究課題/領域番号 07740055
研究種目

奨励研究(A)

配分区分補助金
研究分野 幾何学
研究機関名古屋工業大学

研究代表者

足立 俊明  名古屋工業大学, 工学部, 講師 (60191855)

研究期間 (年度) 1995
研究課題ステータス 完了 (1995年度)
配分額 *注記
1,100千円 (直接経費: 1,100千円)
1995年度: 1,100千円 (直接経費: 1,100千円)
キーワードKahler magnetic field / magnetic Jacobi field / circle / complex torsion / Rolomorphic helix / ideal boundary / Schrodinger operator
研究概要

リーマン多様体上のある種の幾何学的な構造から多様体を考察し特徴づけることはリーマン幾何学の重要な課題である。本研究では空間内の導線を流れる定常電流が作る定磁場を一般化し、閉2次形式という磁場の構造をリーマン多様体上で考えた。この中で本年度考察したのは、各点で磁力が一定であるケーラー多様体と呼ばれる多様体のクラスに対して定義されるケーラー磁場である。
磁力が働かない場合、その多様体上で荷電粒子は等速直線運動をしその軌跡は測地線になる。測地線を考察する上で基礎となる対象多様体は球面、ユークリッド空間、双曲空間であり、これらと比較することで種々の結果が得られている。そこで磁力が働く場合にも比較するための道具を用意することにした。磁場のもとで荷電粒子の軌道がどの様な性質を満たすかを考察し、初期状態を少し変化させたら軌道がどう変化するかを表す磁力内のヤコビ場を導入した。このヤコビ場の様子、つまり変動率について、磁場内の軌道を考察する上で基礎となる対象である複素射影空間、複素ユークリッド空間、複素双曲空間上のヤコビ場の様子と比較することに成功した。
一方、軌道が満たす性質をより一般化して多様体上の円、螺旋として軌道を捉え複素空間形や四元数空間形等の対称性の高い空間でこれらを考察してみた。この様な空間においても円、特に磁場の軌道に対応する円は美しい性質を持つ事が分かった。

報告書

(1件)
  • 1995 実績報告書
  • 研究成果

    (8件)

すべて その他

すべて 文献書誌 (8件)

  • [文献書誌] T.ADACHI: "On the spectrum of periodic Schroedinger operators and a tower of coverings," Bull. London Math. Soc.27. 173-176 (1995)

    • 関連する報告書
      1995 実績報告書
  • [文献書誌] T.ADACHI: "Kaehler magnetic flows on a manifold of constant holomorphic sectional curvature," Tokyo J. Math.18. 473-483 (1995)

    • 関連する報告書
      1995 実績報告書
  • [文献書誌] T.ADACHI: "Curvature bounds and trajectories for magnetic fields on a Hadamard surface," Tsukuba J. Math.(発表予定).

    • 関連する報告書
      1995 実績報告書
  • [文献書誌] T.ADACHI, S.MAEDA, S.UDAGAWA: "Circles in a complex projective space" Osaka J. Math.(発表予定).

    • 関連する報告書
      1995 実績報告書
  • [文献書誌] T.ADACHI, S.MAEDA: "Global behaviours of circles in a complex hyperbolic space." Tsukuba J. Math.(発表予定).

    • 関連する報告書
      1995 実績報告書
  • [文献書誌] T.ADACHI, S.MAEDA: "Holomorphic helices in a complex space form" Proc. A. M. S.(発表予定).

    • 関連する報告書
      1995 実績報告書
  • [文献書誌] T.ADACHI: "A comparison theorem for magnetic Jacobi fields" Proc. Edinburgh Math. Soc.(発表予定).

    • 関連する報告書
      1995 実績報告書
  • [文献書誌] T.ADACHI: "Circles on a quaternion space form" J. Math. Soc. Japan. (発表予定).

    • 関連する報告書
      1995 実績報告書

URL: 

公開日: 1995-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi