• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

Hyper-Kahler多様体と無限次元ゲージ理論

研究課題

研究課題/領域番号 07740059
研究種目

奨励研究(A)

配分区分補助金
研究分野 幾何学
研究機関大阪大学

研究代表者

後藤 竜司  大阪大学, 理学部, 助手 (30252571)

研究期間 (年度) 1995
研究課題ステータス 完了 (1995年度)
配分額 *注記
1,100千円 (直接経費: 1,100千円)
1995年度: 1,100千円 (直接経費: 1,100千円)
キーワード超ケーラー多様体 / グラママン多様体 / ケーラー商構成法
研究概要

筆者はこれまでの研究により、超ケーラー商構成法により、新たなアインシュタイン多様体を構成してきたが、本年度はこの超ケーラー商構成法を無限次元に拡張することを試みた。これは、これまでゲージ理論において、モジュライ空間を構成するために使われていたものを一般化し、興味深い多様体を造り出すことを目標とする。特に無限次元のAffine空間にHilbert Lie群が作用している場合が重要である。このとき、筆者はHilbert Lie群の作用から定義されるHilbert空間のある作用素がFredholm型であることに着目し、超ケーラー商構成法を無限次元においても、かなり自由に使えるように一般化することに成功した。これを用いて、まずケーラー商構成法により、無限次元Hilbert空間のHilbert Lie群による商として、無限次元のGrassmann多様体を構成した。この無限次元のGrassmann多様体とは無限次元Hilbert空間において、いわば∞/2次元の平面全体のなす無限次元多様体である。更に筆者は超ケーラー商構成法によりこのGrassmann多様体の余接束を超ケーラー多様体として構成した。この超ケーラー多様体は別の複素構造ではあるBanach Lie群の複素Adjoint Orbitとしてとらえることができる。この超ケーラー多様体にはその超ケーラー構造を保つ自然なS^1作用があり、有限次元のGrassmann多様体の余接束はすべてこのS^1作用の固定点集合となっている。つまりこの無限次元の超ケーラー多様体は非常に普遍的な性格を持っている。無限次元のGrassmann多様体はKdV-typeの方程式との関連が重要である。筆者はこのGrassmannの拡張として得られた超ケーラー多様体に対応するKdV-typeの方程式の拡張を調べている。これはHiggs束と呼ばれているvector束の拡張を自然にhyper-Kahler部分多様体として含んでいると期待される。

報告書

(1件)
  • 1995 実績報告書

URL: 

公開日: 1995-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi