• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

双曲的多様体の構造変形について

研究課題

研究課題/領域番号 07740071
研究種目

奨励研究(A)

配分区分補助金
研究分野 幾何学
研究機関横浜市立大学

研究代表者

藤井 道彦  横浜市立大学, 理学部, 助手 (60254231)

研究期間 (年度) 1995 – 1996
研究課題ステータス 完了 (1995年度)
配分額 *注記
1,000千円 (直接経費: 1,000千円)
1995年度: 1,000千円 (直接経費: 1,000千円)
キーワード双曲的多様体 / 全測地的境界 / リーマン面のモジュライ空間 / タイヒミュラー空間 / デーン手術
研究概要

3次元双曲線多様体の全測地的境界全体のなす,Riemann面のmoduli空間Mgの部分集合をSgとする。このとき,SgはMgでdenseであることが一昨年度のSomaとの共同研究で示され,Sgは重要な研究対象と認識されてきた。
さて,Thurstonのideal tefrahedron分解を用いての3次元多様体の双曲構造の変形空間の記述と同様に,全測地的境界をもつ3次元双曲多様体については,その構造変形空間がtrunncated tetrahedron分解を用いて記述される。この分解に付随して全測地的境界の三角形分解の変形も記述されるので,3次元多様体の変形空間から,境界のTeichmiiller空間への自然な写像下が定義される。このとき,この写像下の微分も計算できて,3次元多様体の双曲構造を変形したときの全測地的境界のTeichmiiller空間内での動きが,微分レベルで捉えられる。そこで,Kojimaと共同して,下の微分の計算をもとにして,その動きを詳しく解析し,下が埋め込みとなる例を発見した。一方,Neumann-Reidにより,Fが定数となる3次元多様体の境界の例が特殊なものとして見つかっていた。しかしながら,Somaとの共同研究でこのような境界全体をCgとすると,CgがMg内でdenseとなるくらい多く存在することが示せた。

報告書

(1件)
  • 1995 実績報告書

URL: 

公開日: 1995-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi