• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

シンプレクティック多様体に対する層理論とコホモロジー理論

研究課題

研究課題/領域番号 07740081
研究種目

奨励研究(A)

配分区分補助金
研究分野 幾何学
研究機関福岡大学

研究代表者

高倉 樹  福岡大学, 理学部, 助手 (30268974)

研究期間 (年度) 1995
研究課題ステータス 完了 (1995年度)
配分額 *注記
1,000千円 (直接経費: 1,000千円)
1995年度: 1,000千円 (直接経費: 1,000千円)
キーワードシンプレクティック多様体 / 偏極 / 幾何学的量子化 / コホモロジー理論 / ラグランジェ部分多様体 / ハミルトン的群作用 / リ-アン面上のベクトル束 / テ-タ関数
研究概要

本研究課題において具体的な目標としていたことのうち、1.テ-タ関数の理論の偏極シンプレクティックトーラスへの一般化、2.1の結果の、リーマン面およびそのヤコビ多様体への応用、3.偏極シンプレクティック多様体のコホモロジーに関する消滅定理に対して、ある程度の結果と新たな知見を得ることができた。
1については、必ずしもケーラー的でない偏極に対しても、対応するテ-タ関数を定義できること、異なる偏極を用いて得られるテ-タ関数の空間の間には(ベクトル空間としての)同型対応が存在することが示された。実際、同型写像を2通りの方法で構成することができる。これらの間の関係を調べることは未達成であるが、同型のユニタリ性の問題等も含めて興味深い。なお、多少修正が必要だが、シンプレクティック・トーリック多様体に対しても同様の結果が得られると思われる。
2に関しては、リーマン面および偏極の退化という点に対しては、2次元閉多様体上の平坦G主束の同型類の空間(ただしGは一般のコンパクト単純リー群)を含めて統一的に扱うことができることがわかり、さらにG=U(1)の場合にはリーマン面の退化との関連がかなり明確に記述できた。
3に対しては、偏極シンプレクティック多様体の層係数コホモロジーについて小平消滅定理の拡張が成り立つことが判ったが、退化のないきれいな(中間)偏極を許容するものはかなり限られたものしかなく、応用上は、偏極に退化を許すあるいは滑層構造を持つシンプレクティック空間としての偏極まで範囲を広げて考察することが重要と思われ、今後の課題として挙げておく。
なお、J.E.Andersenも上記1、3の結果の一部を独立に得ていることをコメントしておく。

報告書

(1件)
  • 1995 実績報告書
  • 研究成果

    (1件)

すべて その他

すべて 文献書誌 (1件)

  • [文献書誌] Tatsuru Takakura: "Degeneration of Riemann surfaces and internediate polarization of the moduli space of flat connections" Inrentiones mathematicae. (発表予定).

    • 関連する報告書
      1995 実績報告書

URL: 

公開日: 1995-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi