研究概要 |
分散性媒質中を複数個の波が伝播するとき,これらの波の間で振動数と波数または速度に関する共鳴条件が満たされるとエネルギー授受を伴う強い共鳴相互作用が発生する。このような相互作用の一つとして波長のスケールが極端に異なる二種類の波の間で起こる長波短波相互作用がありプラズマ波,表面張力重力波,密度成層流体,二層流体等多くの系で観測される。この共鳴現象を記述する簡単なモデルとして知られている非線型シュレディンガー方程式と波動方程式との連立系を研究した。特に以下の成果を得ることができた。 (1)共鳴方程式の線型化作用素に付随する振動積分の有界性が成立する函数空間を導入した。 (2)共鳴方程式の非線型項に現われる一階微分の因子が引起こす「微分の損失」が発生する状況を(1)との関連で分類した。 (3)共鳴方程式に対して縮小写像の原理が適用可能な枠組を設定した。その結果共鳴方程式を函数解析的に取扱うことに成功した。同時に非線型項の結合定数が可解性には影響しないことを示すことができた。従って従来より行われてきた逆散乱法による取扱いが如何に問題を限定していたかという事情を広い視点から説明することができた。また数値実験で実証されていた共鳴方程式の示すカオス現象の理論的解明についても研究を行った。その結果波のもつ滑らかさはソボレフの意味では少なくとも1/2の指数で時間的に安定であることが証明できた。一次元空間でソボレフ指数の1/2は臨界指数に相当するので現象としてはカオス的側面をある程度把握したことになったと考えられる。
|