• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

複素解析幾何を用いた力学系の研究

研究課題

研究課題/領域番号 07740123
研究種目

奨励研究(A)

配分区分補助金
研究分野 解析学
研究機関大阪市立大学

研究代表者

小森 洋平  大阪市立大学, 理学部, 助手 (70264794)

研究期間 (年度) 1995
研究課題ステータス 完了 (1995年度)
配分額 *注記
800千円 (直接経費: 800千円)
1995年度: 800千円 (直接経費: 800千円)
キーワードkneading理論 / 有理写像 / 位相エントロピー
研究概要

実多項式を、実数から実数への写像と思い、その合成に関する力学系的性質を研究した。特に実3次多項式について、次の2つの結果を得ることができ、現在論文にまとめている。
1)2つのcritical pointsのうちの一方を、与えられた有限型のkneading列で束縛して得られる、実3次多項式族の1パラメーター族の上では、kneading dataが単調に変化することを示した。このことにより、位相的エントロピーも単調に変化することがわかる。この結果は2次多項式族におけるMilnor-Thurstonの結果の自然な拡張になっている。用いる道具としては、kneading理論における中間値の定理と、critically tiniteな有理写像に関するThurstonのrigidity定理がある。ともに2次の時に使われた道具で、これらを3次の時にも使えるように改良したところが今年度の結果である。この仕事は、城西大理学部の西沢清子助教授との共同研究による。
2)実3次多項式族の中で、少なくとも一方のcritical pointの軌道が無限遠点に向かうような写像全体の上では、位相エントロピーが一定な集合は単連結であることを示した。これは「3次多項式族の上では、位相エントロピーのレベル集合は連結であろう」というMilnorの予想に対し、部分的な解答を与えている。用いる道具としては、2つのcritical pointsの軌道がともに有界な写像全体の境界における、位相エントロピーの単調性を1)の手法で示し、そしてBranner-Hubbardによる複素3次多項式写像族の構造定理を、実3次多項式族の場合に書き直すことである。

報告書

(1件)
  • 1995 実績報告書

URL: 

公開日: 1995-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi