• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

π-variationとその応用

研究課題

研究課題/領域番号 07740134
研究種目

奨励研究(A)

配分区分補助金
研究分野 数学一般(含確率論・統計数学)
研究機関北海道大学

研究代表者

井上 昭彦  北海道大学, 大学院・理学研究科, 助教授 (50168431)

研究期間 (年度) 1995
研究課題ステータス 完了 (1995年度)
配分額 *注記
1,000千円 (直接経費: 1,000千円)
1995年度: 1,000千円 (直接経費: 1,000千円)
キーワードπ-variation / Abel-Tauber型定理 / Mercer型定理 / フーリエ変換 / ハンケル変換 / regular variation
研究概要

例えば定常過程の研究においては、相関関数とスペクトル密度の漸近的ふるまいの間の関係を調べることが大事である。この二つは、フーリエ余弦変換で結ばれている。平成7年度発表の論文では、これについての未解決問題を、π-variationの概念を用いて解決している。今回得られた新しい研究成果は、この時の仮定である単調性をずっと弱めた上で成りたつ、新しいタイプのAbel-Tauber型定理である。またそれとは別に、N.H.Bingham 教授との共同研究により、フーリエ変換に対するMercer型定理を証明するのに成功した。一般にMercer型定理とは、積分変換に対するAbel-Tauber型定理において、regular variationという概念がどのような意義をもつかを明らかにするものである。ラプラス変換のような比較的扱いやすい積分変換に対しては、このMercer型定理は既に証明されているが、その証明は既に十分複雑で難解なものである。従ってフーリエ変換のような条件収束しかしないような変換に対しては、これまで全く手がつけられていなかった。我々の結果は、フーリエ変換だけでなく一般のハンケル変換に対しても成り立つ。但し、最初の論文では、「ハンケル変換の指数が小さいこと」という条件がついている。この条件は現在進行中の研究によりはずすことができると思う。

報告書

(1件)
  • 1995 実績報告書
  • 研究成果

    (2件)

すべて その他

すべて 文献書誌 (2件)

  • [文献書誌] A.Inoue: "On Abel-Tauber Theorems for Fourier Cosine Transforms" J.Math.Anal.Appl.196. 764-776 (1995)

    • 関連する報告書
      1995 実績報告書
  • [文献書誌] A.Inoue: "An Abel-Tauber theorem for Fourier sine transfo" J.Math.Sci.Univ.Tokyo. 2. 303-309 (1995)

    • 関連する報告書
      1995 実績報告書

URL: 

公開日: 1995-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi