• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

時間領域半古典論による量子カオス系の解析

研究課題

研究課題/領域番号 07740336
研究種目

奨励研究(A)

配分区分補助金
研究分野 物性一般(含基礎論)
研究機関岡崎国立共同研究機構

研究代表者

首藤 啓  岡崎国立共同研究機構, 分子科学研究所, 助手 (60206258)

研究期間 (年度) 1995
研究課題ステータス 完了 (1995年度)
配分額 *注記
1,000千円 (直接経費: 1,000千円)
1995年度: 1,000千円 (直接経費: 1,000千円)
キーワード量子カオス / トンネル現象 / 半古典論 / 複素古典力学 / 動的トンネリング / Laputa ブラノチ
研究概要

時間領域の半古典論を用いることにより、カオスが存在することによるトンネル現象の諸性質を調べた。特に、一次元に周期的な外力が入った単純な系を、トンネルの効果を純粋に抽出できるような形に設計し、その性質を詳しく調べた。その結果、カオスが存在することによって生じる、従来知られていたトンネリングとは全く質的に異なる非可積分系のトンネルの機構“Chaotic Tunnleing"が明らかにされた。特に、(1)トンネリングによる遷移確率がカオスの存在によって著しく増大する、(2)トンネリングテイルに、複雑な干渉パターン、多段構造が発生する、(3)トンエル領域で確率が減少するのではなく、逆に増大することが有り得る、といった非可積分系特有な新しいトンネル現象が発見された。このようなトンネリングの詳しいメカニズムをすべて、複素古典軌道を用いた半古典論によって解釈することに成功した。トンネル確率の著しい増大は複素causticsの実面への接近、トンネリングテイルの複雑な構造は、プロパゲ-タに寄与するおびただしい数の複素軌道(Laputa軌道)の存在と、複素空間内におけるそれらの引き延ばしと折れ畳み機構(Laputa鎖)、などによってそれぞれ説明されることがわかった。さらに、以上の定性的特徴は、系の詳細によらず、力学系が非可積分性であることに起因することも明らかになった。また、複素古典力学を考える際に避けて通ることのできないストークス現象について、複素多様体の“木構造"を基にした、処理法に対する一つの作業仮設を提出し、具体的にそれが非可積分系のストークス現象の処理に有効であることを示した。

報告書

(1件)
  • 1995 実績報告書
  • 研究成果

    (2件)

すべて その他

すべて 文献書誌 (2件)

  • [文献書誌] Y.Shimizu and A.Shudo: "Polygonal billiards:Correspondeuce between classical trajectories and Quautum eigeustates" Chaos,Solitous & Fractals. 5. 1337-1361 (1995)

    • 関連する報告書
      1995 実績報告書
  • [文献書誌] 首藤啓、池田研介: "カオス系の量子トンネリング" パリティ(丸善). 11月号. 30-32 (1995)

    • 関連する報告書
      1995 実績報告書

URL: 

公開日: 1995-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi