研究概要 |
動物の神経系では,電気的振動現象及びその現象にともなう引き込み,複雑な非線形的挙動(カオスなど)が観測されている.本研究では,これらの現象が神経系における情報処理(パターン認識・学習など)とどのような関係があるかを単純な数理モデルを用いることによって解明することを試みた.また,振動現象を用いることが情報処理にとって有利な点をモデルにおいて定量的に明らかにし,系の非線形性を十分強くした状態で観測され得る複雑なカオス的振動を情報処理機能として捉え,新しい機能を有するパターン認識・学習システムを構築することを目標とした ここではランダムに結合した円写像系における非線形ダイナミクスについて数値的かつ解析的に調べた.この系は連想記憶システムとして構成されており,基本的には複数の位相パターンが安定平衡点として実現されている.結合強度(結合非線形度)を上げると記憶容量が増加すると同時に巨視的ダイナミクスが複雑化することが見いだされた.また,統計力学的解析によって,系の巨視的振る舞いを記述する時間発展方程式を得ることが出来た.
|