• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

位相的場の量子論の変形と量子マスター方程式

研究課題

研究課題/領域番号 08211246
研究種目

重点領域研究

配分区分補助金
研究機関広島大学

研究代表者

菅野 浩明  広島大学, 理学部, 講師 (90211870)

研究期間 (年度) 1996
研究課題ステータス 完了 (1996年度)
配分額 *注記
800千円 (直接経費: 800千円)
1996年度: 800千円 (直接経費: 800千円)
キーワード自己双対接続 / Wess-Zumino-Witten模型 / トロイダル・リー代数 / 位相的場の理論 / Joyce多様体
研究概要

1.当初の研究計画は、弦理論を題材とした位相場の量子論の変形問題であったが、最近、超弦理論の双対性と非摂動的力学について新展開があったため、予定を変えて、共形場理論の高次元化、および高次元における位相的場の量子論の可能性に関する研究を進めた。
2.2次元のWess-Zumino-Witten(WZW)模型は共形場理論の最も典型的な例であるが、4次元のケーラー多様体上では、WZW模型の高次元化とみなすことのできるケーラーWZW模型を定義することができる。この模型の運動方程式は4次元ケーラー多様体上の反自己双体接続を記述しており、可積分性をもつことが期待される。我々は、ケーラーWZW模型のもつ無限次元対称性を調べ、それが2トロイダル代数とみなせることを明らかにした。
3.高次元における位相的場の量子論に関する研究では、8次元でホロノミー群がSpin(7)の場合(Joyce多様体)とSU(4)の場合(Calabi-Yau多様体)について位相的ゲージ理論を構成した。とくに、前者の場合、ゲージ固定条件=運動方程式は4次元の反自己双対方程式における4元数の役割を8元数に置き換えたものになっており、この意味で自然な拡張になっている。

報告書

(1件)
  • 1996 実績報告書
  • 研究成果

    (2件)

すべて その他

すべて 文献書誌 (2件)

  • [文献書誌] H. Kanno: "BRS Cohomology in Topological String Theory and Integrable Systems" Proceedings of International Symposium on the BRS symmetry. 303-317 (1996)

    • 関連する報告書
      1996 実績報告書
  • [文献書誌] T. Inami, H. Kanno, T. Ueno and C. -S. Xiong: "Two-toroidal Lie Algebra as Current Algebra of Four-dimensional Kahler WZW Model" Physics Letters B. (発表予定).

    • 関連する報告書
      1996 実績報告書

URL: 

公開日: 1996-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi