研究課題/領域番号 |
08650198
|
研究種目 |
基盤研究(C)
|
配分区分 | 補助金 |
応募区分 | 一般 |
研究分野 |
流体工学
|
研究機関 | 名古屋工業大学 |
研究代表者 |
中林 功一 名古屋工業大学, 工学部, 教授 (90024231)
|
研究分担者 |
余 偉明 (しゃ 偉明) 名古屋工業大学, 工学部, 助手 (60251716)
|
研究期間 (年度) |
1996 – 1997
|
研究課題ステータス |
完了 (1997年度)
|
配分額 *注記 |
2,200千円 (直接経費: 2,200千円)
1997年度: 600千円 (直接経費: 600千円)
1996年度: 1,600千円 (直接経費: 1,600千円)
|
キーワード | 2球間クエット流 / カオス / 層流一乱流遷移 / ポアンカレ断面 / 一次再帰写像 / 相関次元 / 遷移のシナリオ / 数値解析 / スパイラルTG渦 |
研究概要 |
2球間クエット流の層流一乱流遷移における攪乱消滅現象の解明と乱流制御理論の研究のために、実験、理論解析と数値計算を行った。以下の結果が得られた。まず、攪乱消滅現象の発生領域はすきま比β=0.13〜0.17辺りであることが確定できた。攪乱消滅の生じているβ=0.14の典型な場合は、流れ場は次のようなシナリオ:定常状態→周期状態→準周期状態→カオス→周期状態→定常状態→周期状態→カオス:を辿る。1.74<R^*<1.95では(R^*はレイノルズ数比で、R^*=Re/Recで定義されている。ここで、Reは回転レイノルズ数、Recは臨界レイノルズ数である)、速度変動の相関次元dが2.1であり、ポアンカレ断面には環状のT^2トーラスを示し、準周期状態と見せるが、R^*=1.90でのポアンカレ断面には折り畳み構造が現れる。一次元再帰写像には勾配がほぼ0で不可逆となる部分が現れ、レイノルズ数の増加に伴い攪乱成分の非線形性が強まることがわかる。赤道上のすき間中部での変動速度のrms値は、R^*=2付近での急激な増加からR^*=6.5付近での急激な減少までの間、ほぼ一定の値を保つことが明らかとなった。攪乱消滅が生じる他のすきま比の場合に関しても、相関次元dの値が4〜5まで増加した後に、0にまで減少する。攪乱消滅が生じる場合には、カオス領域において高周波成分のエネルギーがほぼ0にまで減少するという特性が見られる。一方、攪乱消滅が生じない場合は相関次元の値が減少せず増加し続ける。カオス領域においてレイノルズ数の増加に伴い高周波の攪乱のエネルギーも増大し続ける。次に、数値計算について新しい数値アルゴリズムにより球面座標における非圧縮性ナビエ・ストークス方程式の高精度差分数値解析コードを完成させた。そして、すきま比β=0.14の場合について、内球の回転数を準静的に増大させたときに生じる2球間クエット流れの数値計算を行い、環状TG渦とスパイラルTG渦の数値計算結果を示した。これより実験結果の再現が明らかとなり,高レイノルズ数の流れにおける数値計算手法の一つとして本数値計算方法が適切なものであることが確認された。さらに、数値計算結果により超臨界流のスパイラルTG渦の詳細な構造について考察し、その生成過程と形成メカニズムが始めで明らかにされた。
|