• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

ニューラルネットによる非線形多変量解折の心理教育学への応用的研究

研究課題

研究課題/領域番号 08710109
研究種目

奨励研究(A)

配分区分補助金
研究分野 教育・社会系心理学
研究機関立教大学

研究代表者

豊田 秀樹  立教大学, 社会学部, 助教授 (60217578)

研究期間 (年度) 1996
研究課題ステータス 完了 (1996年度)
配分額 *注記
900千円 (直接経費: 900千円)
1996年度: 900千円 (直接経費: 900千円)
キーワード心理教育測定学 / ニューラルネットワーク / 非線形多変量解析法 / 判別分析 / 回帰分析 / 線形制約 / 主成分分析 / 線形な関数
研究概要

研究代表者の専門は心理教育測定学であり,研究業績にも示したとおりこれまで多変量解析の理論的かつ応用的研究を行ってきた.一般的に,心理学や教育学の分野でのデータには多くの誤差が混入しており,多変量解折の分析結果が思わしくないことも多い.そこで近年注目されているニューラルネットワークを非線形多変量解析の1つの手法として導入した.本研究では,教育心理学分野でなじみの深い応用例の紹介を通じて,実用的な意味での非線形多変量解析法(Nonlinear multivariate analysis)の可能性とその有効性を確認した.
教育心理学の研究分野では,判別分析,主成分分析,回帰分折等,多変量解折と呼ばれる統計手法がしばしば使用される.しかし多変量解析は主として線形な関数によってデータの全体的傾向を表現し,情報の判別や縮約的記述や予測を行っている.しかし線形関数を使用することは,判別や記述や予測の目的にとって必要不可欠な前提というわけではなく,むしろ制約である.データの全体的な傾向を表現するためには,非線形な関数を利用したほうが効果的な分析が可能になる場合もある.そこで多変量解析を非線形モデルに拡張する際の自然な,しかも強力な発展モデルとして,本研究ではニューラルネットワークを用いることによって,従来の多変量解析の線形制約による限界をしばしば克服できる場合があることを実証した.

報告書

(1件)
  • 1996 実績報告書
  • 研究成果

    (2件)

すべて その他

すべて 文献書誌 (2件)

  • [文献書誌] 豊田秀樹: "測定評価と共分散構造分析" 教育心理学年報. 37(印刷中). (1997)

    • 関連する報告書
      1996 実績報告書
  • [文献書誌] 豊田秀樹: "非線形多変量解析" 朝倉書店, 174 (1996)

    • 関連する報告書
      1996 実績報告書

URL: 

公開日: 1996-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi