• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

高次元の代数多様体における分岐

研究課題

研究課題/領域番号 08740009
研究種目

奨励研究(A)

配分区分補助金
研究分野 代数学
研究機関千葉大学

研究代表者

松田 茂樹  千葉大学, 理学部, 助手 (90272301)

研究期間 (年度) 1996
研究課題ステータス 完了 (1996年度)
配分額 *注記
1,000千円 (直接経費: 1,000千円)
1996年度: 1,000千円 (直接経費: 1,000千円)
キーワードp進解析 / 分岐理論 / 過収束クリスタル / カッツ対応 / p進微分方程式
研究概要

研究の方向としては,1.代数曲面のオイラー標数と分岐の関係,2.正標数のガロア表現とp進微分方程式との関係,の二つがあった。このうち1.については,代数曲面の開集合の基本群の一次表現に対応するl進層のオイラー標数についての加藤の公式が単にcleanというだけではなく,もう少し強い条件を満たす場合でなければ成立しないことを示し,その場合に消滅サイクルについての予想を整理した。
次に二つ目のp進微分方程式の性質についてであるが,従来標数0の体の上では,射影直線の上の原点の上では確定特異点を持ち,無限遠点の上で特異点を持つ微分加群と,その無限遠点の上の局所環の商体上の微分加群の間を結ぶKatz対応というものがあり,局所的な微分加群を標準的に大局的なものに伸ばすことが出来ることが知られていた。また,正標数の体の上でも微分加群を被覆に置き換えれば,同様なKatz対応が成立していた。今回はこのKatz対応を正標数の体の上の可能的過収束クリスタルの場合に対して証明した。これは,標数0の微分方程式の場合の類似であり,更に正標数の被覆の場合の拡張になっている。この結果により,正標数の体の上のある性質を満たす微分加群のなす圏の微分Galois群と呼ばれる代数群を定義することが出来る。これは,古典的な分岐理論におけるGalois群に対応し,Galois群に分岐フィルトレーションが入るのと同様に無限遠点における特異点の度合によるフィルトレーションを入れることも出来る。この代数群に対して従来の分岐理論を考えることで,より深くp進表現とp進解析との関係が調べることが出来ることが期待される。

報告書

(1件)
  • 1996 実績報告書
  • 研究成果

    (1件)

すべて その他

すべて 文献書誌 (1件)

  • [文献書誌] Shigeki,MATSUDA: "On the Swan conductor in positive characteristic" American Journal of Methematics. (発表予定).

    • 関連する報告書
      1996 実績報告書

URL: 

公開日: 1996-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi