研究概要 |
植物細胞の液胞機能を支えている膜輸送分子について、分子構造、機能の特徴を解明し、輸送系ネットワークを総合的に考察することを研究目的とした。具体的にはプロトンポンプ(H^+-ATPaseとH^+-pyrophosphatase)、Ca^<2+>-ATPaseとCa^<2+>/H^+対向輸送体、水チャネル(VM23)を対象とした。 (1)液胞膜H^+-PPaseの解析:高等植物の祖先にあたると考えられるシャジクモのH^+-PPaseのcDNAを得た。アミノ酸配列の相同性は高等植物間では約90%であるが、高等植物とカサノリでは70%であり、植物の進化と分子進化の時間経過を反映していると考えられた。触媒部位と推定している配列は保存されていた。また、機能調節-構造相関を解析するために、酵母での発現系を確立することができた。 (2)液胞膜Ca^<2+>能動輸送系:液胞膜はCa^<2+>回収装置としてCa^<2+>-ATPaseとCa^<2+>/H^+交換輸送体を備え、細胞質Ca^<2+>濃度を規定している。本年度、交換輸送体のcDNAから一次構造(444アミノ酸)を明らかにした。高疎水性のタンパク質で11個の膜ドメインが推定され、分子中央の酸性アミノ酸に富む領域(16残基)はCa^<2+>識別に関与していると考えられる。抗体も得た。2つの輸送装置の協関を明確にしたい。 (3)水チャネル:ダイコンの液胞膜水チャネル(γ-VM23,δ-VM23)に加えて細胞膜型(PAQ1,2)のクローンを得た。いずれも伸長生長の盛んな胚軸と若い葉の葉脈でmRNA量の量が多かった。細胞膜型と液胞型水チャネルは協調的に発現している場合が多かった。液胞膜水チャネルが膜の30-50%を占める点は、生物界の中でも植物液胞のもつ最も重要な特徴である。植物液胞膜は僅かな浸透圧差を利用して急速に多量の水を透過させる必要があるものと推定される。
|