研究概要 |
非Lipschitz関数が作用するBanach関数空間が自明なものに限るための十分条件を与えた.非自明なBanach関数環あるいはもっと一般に非自明なBanach関数空間上の作用関数はLipschitz関数とは限らないがある程度強い連続性を持つことが示された.このことはBanach関数環A上の作用関数によりGelfand空間を特徴づけるのはある意味では難しいということを暗示していると考えられる. 非離散局所コンパクトabel群G上の測度環をM(G)とし,自然なスペクトルをもつ測度全体をNS(G)とする.すると,NS(G)は和に関して閉じていなくGがコンパクトでないときはNS(G)+L^1(G)=M(G)が成立することがわかった.また,Fourier-Stieltjes変換が無限遠点でOとなるM(G)の元全体からなる可換Banach環M_0(G)とし,そのなかで自然なスペクトルをもつ測度全体をNS_0(G)とする.GがコンパクトのときこれはL^1(G)上の作用素としてdecomposableなもの全体(Apostol環)と一致するが,コンパクトでないときはそうならないこともわかった.NS(G)にはL^1(G)上の作用素としてdecomposableでないものがあることもわかった.実際,NS(G)+NS(G)+NS(G)=M(G)であることが示された.対応する事柄はFourier multiplierからなる可換Banach環では既に知られていたので,得られた結果は自然なものと言える. Douglas環のApostol環はQ-連続関数全体と一致すること,単位開円板上の有界正則関数全体H^∞に対してNSH^∞+NSH^∞=H^∞も示された.このことからNSH^∞は代数的には閉じていなく,ある程度大きい集合であることがわかった.
|