• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

局所体上の簡約可能代数群のスーパーカスピダル表現について

研究課題

研究課題/領域番号 09740037
研究種目

奨励研究(A)

配分区分補助金
研究分野 代数学
研究機関大阪府立大学

研究代表者

高橋 哲也  大阪府立大学, 総合科学部, 助教授 (20212011)

研究期間 (年度) 1997 – 1998
研究課題ステータス 完了 (1998年度)
配分額 *注記
2,100千円 (直接経費: 2,100千円)
1998年度: 900千円 (直接経費: 900千円)
1997年度: 1,200千円 (直接経費: 1,200千円)
キーワードスーパーカスピダル表現 / 指標公式 / ε-factor / 局所Langlands予想 / イプシロンファクター
研究概要

次に2つの課題について研究を行った。
1. GL_2(F)×GL_3(F)のε-ファクターの計算
GL_2(F),GL_3(F)のホイカッターモデルの具体的な形を求めることはできたので、それらのランキンセルバーグ対合積を計算すれば原理的にはε-ファクターが得られる。しかし、計算を実行するとその対合積は0になってしまうことが多いので0にならないモデルの取り方に成功した。この部分は、数式処理ソフトMathematicaを用いて、行列の成分を数式のまま実際に与えて、12変数の9個の式からなる連立方程式(1次ではない)を解くことにより解決した。あとは、具体的な積分の計算に帰着されたがここでも、コンピューターによる計算(数値計算ではなく、数式の計算)行って、結果の予想に役立てる予定である。
2. GL_1(F)全ての既約スーパーカスピダル表現の指標の計算(Fの剰余標数が3でないとき)
l=3の場合に指標公式を得て、結果を論文にまとめて現在投稿中である。任意の3次分岐拡大E/Fが、ガロア拡大の時は、指標公式を既に得ているので、3次分岐拡大E/Fが非ガロア拡大の時が問題であったが、この時は、Fの2次不分岐拡大Lへbase changeすることにより、ガロア拡大の場合の結果を応用できた。この結果を一般のlに拡張することは、3次の場合に具体的な逆行列を計算しているので困難であるが、結果は一般に成り立つことが予想されるので、現在、l=5の場合のときに、表現のレベルが低い場合を数式処理ソフトMathematicaを用いて計算機に計算させていて、幾つかの場合び予想が成り立つことが確かめられた。

報告書

(2件)
  • 1998 実績報告書
  • 1997 実績報告書
  • 研究成果

    (1件)

すべて その他

すべて 文献書誌 (1件)

  • [文献書誌] 高橋哲也: "p進体上の簡約代数群のadmissible表現論入門(Rokko Lectures in Math.vol.4)" 神戸大学理学部数学教室, 55 (1998)

    • 関連する報告書
      1998 実績報告書

URL: 

公開日: 1997-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi