• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

スカラー曲率の方程式と楕円形特異境界値問題

研究課題

研究課題/領域番号 09740065
研究種目

奨励研究(A)

配分区分補助金
研究分野 幾何学
研究機関大阪市立大学

研究代表者

加藤 信  大阪市立大学, 理学部, 助教授 (10243354)

研究期間 (年度) 1997 – 1998
研究課題ステータス 完了 (1998年度)
配分額 *注記
2,000千円 (直接経費: 2,000千円)
1998年度: 900千円 (直接経費: 900千円)
1997年度: 1,100千円 (直接経費: 1,100千円)
キーワードスカラー曲率 / 共形変形
研究概要

本研究は「リーマン多様体上に与えられた滑らかな関数が、どのような条件を満たすとき、その共形類内の適当なリーマン計量によりそのスカラー曲率として実現され得るか?」と言う幾何学上の問題を解析的に定式化した、いわゆるスカラー曲率の方程式を特別な場合として含む、あるクラスの非線形二階楕円型偏微分方程式に関する研究である。本年度の研究では、前年度に引き続き、これまで主としてユークリッド空間の余次元一のなめらかな境界を持つ有界領域について研究されて来た楕円型特異境界値問題、すなわち境界条件として無限大を与えた問題の一般化とも捉えることの出来る、コンパクト・リーマン多様体から閉部分多様体またはより一般の閉部分集合を除いた部分領域の場合の正値解のなす空間の構造について調べ、その結果を、論文「Uniqueness of solutions of an elliptic singularboundary value problem」、「Nonexistence of subsolutions of a nonlinear elliptic equation onbounded domains in a Riemannian manifold」として発表した。さらに、これらの空間を共形変形することにより得られる完備リーマン多様体をその特別な場合として含む、より一般の非コンパクト・リーマン多様体において、方程式の解の存在、挙動、非存在等について、これまでに与えられて来たいくつかの命題を一般化した形で、統一的な証明を与えた。

報告書

(2件)
  • 1998 実績報告書
  • 1997 実績報告書
  • 研究成果

    (2件)

すべて その他

すべて 文献書誌 (2件)

  • [文献書誌] Shin KATO: "Uniqueness of solutions of an elliptic singular banndary value problem" Osaka J.Math.35・2. 279-302 (1998)

    • 関連する報告書
      1998 実績報告書
  • [文献書誌] Shin KATO: "Nonexistence of subsdutions of a nonlinear elliptic equation on bounded dancing in a Riemcnnian Marifdd" Hiroshima Math.J.28・3. 419-435 (1998)

    • 関連する報告書
      1998 実績報告書

URL: 

公開日: 1997-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi