• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

アファイン代数多様体上の代数的群作用

研究課題

研究課題/領域番号 09740077
研究種目

奨励研究(A)

配分区分補助金
研究分野 幾何学
研究機関姫路工業大学

研究代表者

増田 佳代  姫路工業大学, 理学部, 講師 (40280416)

研究期間 (年度) 1997 – 1998
研究課題ステータス 完了 (1998年度)
配分額 *注記
1,800千円 (直接経費: 1,800千円)
1998年度: 900千円 (直接経費: 900千円)
1997年度: 900千円 (直接経費: 900千円)
キーワード代数的群作用 / 同変ベクトル束 / 線型性問題 / アファイン代数多様体 / 変換群
研究概要

複素アファイン代数多様体上の代数群Gの代数的群作用について次のことを明らかにすることができた.
1 同変ベクトル束のつくるモジュライ.
底空間のalgebraic quotientの次元が2次元以上の場合は、その上の同変ベクトル束のつくるモジュライについては、特別な場合を除いてはこれまでほとんど何も知られていなかった。このたびの研究において、底空間がG表現空間で、2次元以上のなめらかなalgebraic quotientを持ちさらにファイバーが“ある条件"をみたせば、一般に同変ベクトル束のつくる"モジュライ"は無限次元となることを示すことができた.また、アファインquadric上の同変ベクトル束についてはこれまで全く調べられていなかったが、アファインquadric上の同変ベクトル束のつくるモジュライも一般に存在し無限次元となることを示すことができた.
2 固定点集合が低い余次元を持つ場合のGm作用.
非特異アファイン代数多様体上の1次元代数的トーラスGmの作用について、固定点集合が低い余次元を持つ場合にいくつかの結果を得ることができた.特に3次元アファイン空間A^3にGmが作用しているとき、Gmの固定点集合Wが既約な超平面となるならば、WはA^3の座標平面となることを示すことができた.またさらに、Gm作用による3次元非特異アファイン代数多様体の特徴付けを得ることができた.
3 Gm作用をもつ場合の一般ヤコビアン問題.
Xをなめらかな代数曲面とする.“X上のエタールendomorphismは同型射か?"という一般ヤコビアン問題について、XがGm作用をもつ場合にさまざまな結果を得ることができた.特にXがPlatonic A^1-fiberspaceである場合の結果はヤコビアン予想の解決へのひとつの手がかりを与えるものである.

報告書

(2件)
  • 1998 実績報告書
  • 1997 実績報告書
  • 研究成果

    (2件)

すべて その他

すべて 文献書誌 (2件)

  • [文献書誌] K.Masuda: "Invariant subvarieties of low codimension in the affine spaces" Tohoku Math.J.

    • 関連する報告書
      1998 実績報告書
  • [文献書誌] K.Masuda: "Etale endomorphisms of algebraic surfaces with Gm-actions" Max-Plarck-Institut fur Mathematik Preprint series. 123. 1-29 (1998)

    • 関連する報告書
      1998 実績報告書

URL: 

公開日: 1997-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi