• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

数理工学における偏微分方程式の逆問題への一意接続性定理の応用と数値解析

研究課題

研究課題/領域番号 09740143
研究種目

奨励研究(A)

配分区分補助金
研究分野 数学一般(含確率論・統計数学)
研究機関京都大学 (1998)
大阪大学 (1997)

研究代表者

久保 雅義  京都大学, 情報学研究科, 講師 (10273616)

研究期間 (年度) 1998
研究課題ステータス 完了 (1998年度)
配分額 *注記
2,000千円 (直接経費: 2,000千円)
1998年度: 900千円 (直接経費: 900千円)
1997年度: 1,100千円 (直接経費: 1,100千円)
キーワードCarleman評価 / 逆問題 / 一意接続性 / 偏微分方程式
研究概要

通常の偏微分方程式に対する一意接続性ではゼロ初期条件を初期面に与えたときにその初期面の近傍でゼロとなるかを考察するのであるが,さらに境界面に境界条件を附加することで今までは困難とされていたタイプの一意接続性を示した.具体的には強双曲型偏微分方程式に対してDirichlet境界条件の場合だけでなくNeumann境界条件の場合でも初期面がStrongly pseudo-convex条件を満たせば初期面がtime-likeであっても境界と初期面のなす角度がある一定の条件を満たせば境界と初期面の交わりの近傍で一意接続性が成立することを示した.方程式がダランベルシアンの場合は境界と初期面のなす角度が90度未満であればその条件は満たされる.これは境界データ込のCarleman評価を強双曲型偏微分方程式に対して示すことによって成されるが,今回この評価を双曲型だけでなく放物型,楕円型に対しても示した.一つの応用として偏微分方程式の係数を決定する逆問題の解の一意性については、観測を領域のすべての境界ではなく、ある条件を満たす部分領域であればよいことがわかった。この結果は作用素の型には依存しないものであり一般の形状の領域に対しても適用可能である。また熱方程式の解と初期値に対する評価を導いた。これは熱方程式の初期値問題の解の空間のある点の近傍の時刻ゼロの近傍での減衰オーダーから、初期値のサポートの位置の情報を得るもので,いわゆる逆問題のーつである。更にこれと関連して熱方程式及びシュレディンガー方程式に対するAsymptotic Unique Continuationを特殊な重み関数を用いて示すことができた。これはt=(定数)の平面の一部において方程式の解がexponential orderでゼロになるならば、その状態を同じt=(定数)の平面の他の部分(近傍)に伝えるというものである。

報告書

(2件)
  • 1998 実績報告書
  • 1997 実績報告書
  • 研究成果

    (6件)

すべて その他

すべて 文献書誌 (6件)

  • [文献書誌] 久保 雅義: "Uniqueness in Inverse Hyperbolic Problems" Journal of Math.of Kyoto University. (発表予定).

    • 関連する報告書
      1998 実績報告書
  • [文献書誌] 久保 雅義: "Carleman Estimater and Nongrical Aspects for the Caudy Problems for Elliptic Equatious" Pecent treuds in inverso and ill-posed Probleus(VSP). (発表予定).

    • 関連する報告書
      1998 実績報告書
  • [文献書誌] 久保 雅義: "Unique Coutinuation for Solutiour to Hyperbolic Operators by a Localized Fourier-Gouss Transformation" Journal of Inverse and Ill-posed Problems. (発表予定).

    • 関連する報告書
      1998 実績報告書
  • [文献書誌] 久保 雅義: "Identification of the Patential Term of The wave Equation" Proc.Japan Acad.,Sov.A,Vol71. Vol.71. 174-176 (1996)

    • 関連する報告書
      1998 実績報告書
  • [文献書誌] 久保雅義: "Unique Continuation for Sdutious to Hyperbolic Operators by a localized Fourier-Gauss Transformations" Journal of Inverse and Ill-posed Problems. (発表予定).

    • 関連する報告書
      1997 実績報告書
  • [文献書誌] 久保雅義: "Uniqueness in Invense Hyperbolic Problems" Journal of Mathematics of Kyoto University. (発表予定).

    • 関連する報告書
      1997 実績報告書

URL: 

公開日: 1997-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi