研究課題/領域番号 |
09J00824
|
研究種目 |
特別研究員奨励費
|
配分区分 | 補助金 |
応募区分 | 国内 |
研究分野 |
大域解析学
|
研究機関 | 東北大学 |
研究代表者 |
眞崎 聡 東北大学, 大学院・情報科学研究科, 特別研究員(PD)
|
研究期間 (年度) |
2009 – 2011
|
研究課題ステータス |
完了 (2009年度)
|
配分額 *注記 |
1,000千円 (直接経費: 1,000千円)
2009年度: 1,000千円 (直接経費: 1,000千円)
|
キーワード | 微分方程式 / 非線型シュレディンガー方程式 / 半古典近似問題 / WKB近似 / 漸近挙動 / オイラー方程式 |
研究概要 |
非線型シュレディンガー方程式にプランク定数に相当するパラメータをいれて、そのパラメータをゼロに近づける半古典曲極限と呼ばれる極限下での解の挙動を探る。この極限は物理現象をマクロな視点から見ていることに対応しており、量子力学で支配される世界から古典力学で支配される世界への移行を記述する。 21年度の目標として、流体力学の手法を学び、古典軌道を解析することを挙げた。これについて大きな成果が得られた。特に、シュレディンガー・ポアッソン方程式系において、ある特殊な形の初期値を与えると、対応する古典軌道が焦点を形成せずに時刻無限大まで伸びることがわかった。この研究では対応するオイラー・ポアッソン方程式の解の非常に詳細な解析が必要であった。また、この特殊例に対しては、半古典極限におけるWKB型の解の近似が準大域的に成立することも示した。 また、6月にフランス・イギリスに一か月滞在して、国際研究集会において研究発表を行い、また海外の研究者と議論を交わし情報交換を行った。そこでの情報交換をもとにして、シュレディンガー・ポアッソン方程式系における解の半古典極限におけるWKB型近似を空間2次元に対して拡張した。先行結果で1次元と3次元以上に関しては知られていたが、2次元についてはわかっていなかった。 この結果に関しては反響も大きく、9月に開催された日本数学会2009年度総合分科会で初めて発表したのち、約3カ月の間にセミナーや研究集会などで7回もの講演の機会を得ることにつながった。
|