研究概要 |
蒸気タービンやモータのような回転機械は年々高速化,高性能化,軽量化され,動作の安定,振動の低減化の要求が厳しくなっている.このため,実験データと理論的検討を融合して数学モデルを作成する実験的同定法が大きな関心を呼んでいる.この研究は,回転機械の実験的同定法の開発とその応用を目的としている.回転軸系の同定の問題では,高速で回転するため,往復振動する通常の構造系と異なって加振が困難であること,また不つり合いや初期たわみといった回転軸系特有の量の推定が難しいという問題がある.また軸受け部のがた,油膜特性など系を非線形にする要因が多く,非線形系としての同定が要求される.これらの問題を解決する実験的同定法として,先の研究で振動数領域同定法を提案した.この研究では,同定に時間がかかるという振動数領域同定法の欠点を解決するため,時間領域法を提案した.まず基本的な検討のため,簡単な系である集中回転軸系を取り上げ,同定法を提案した.最小自乗法とラグンジュ未定乗数法に基づく同定法を提案し,その有効性を数値シミュレーションと実験により確認した.次に同じ集中回転軸系に対して,非線形系の場合にも適用できるよう,前述の同定法の一般化を行った.この場合の有効性も数値シミュレーションと実験により確認した.最後に,実際の問題への応用を目的として,連続回転軸の同定法を提案した.ここでも最小自乗法とラグランジュ未定乗数法に基づく同定法を提案し,その有効性を数値シミュレーションと実験により確認した.
|