研究概要 |
自然現象や社会現象等の時間的な変化を予測することは自然破壊,環境問題,人口問題,経済危機等に対応するために非常に重要である。このような現象の多くは非線形であり,非線形予測器の研究も多く行われている。本研究では,非線形予測を過去のサンプルから未来のサンプルへの写像としてとらえ,非線形なパターン写像の有効な手法であるニューラルネットワークと線形予測を組み合わせたハイブリッド形非線形予測器を開発した。 (1)非線形予測器の提案 階層形ニューラルネットワークによる非線形予測を入力側に,FIRフィルタによる線形予測を出力側に配置した縦続形のハイブリッド形予測器を提案した。階層形ニューラルネットワークの出力ユニットは線形素子であり,線形予測の能力も有している。 (2)学習方法の提案 非線形予測器と線形予測器をこの順に分離学習する方法を提案した。次に,雑音を含む非線形時系列の予測において,強化学習法を提案した。誤差逆伝播学習法の過程に結合荷重の強化を組み込んだ方法である。ニューロンの入力値が活性化関数の飽和領域にシフトされ雑音の影響が低減される。 (3)時系列データの非線形性を解析する方法の提案 類似する過去のサンプルから予測されるサンプルの分散で非線形性を評価する方法を提案した。実際の非線形データ及び線形システムから生成した時系列を用いてその有効性を確認した。これに基づいて,非線形予測に必要なニューラルネットワークの規模を推定する方法を提案し,最小構成を可能とした。 (4)実際の非線形時系列の予測 太陽黒点,湖の水位,カオス,及び霧発生の時間的な変化の予測に本予測器を適用し,その有効性を調べた結果,従来方法に比べて本方式が常に最小の予測誤差を与えていることを確認した。
|