研究課題/領域番号 |
10780231
|
研究種目 |
奨励研究(A)
|
配分区分 | 補助金 |
研究分野 |
知能情報学
|
研究機関 | 大阪大学 |
研究代表者 |
庄野 逸 大阪大学, 大学院・基礎工学研究科, 助手 (50263231)
|
研究期間 (年度) |
1998 – 1999
|
研究課題ステータス |
完了 (1999年度)
|
配分額 *注記 |
2,300千円 (直接経費: 2,300千円)
1999年度: 600千円 (直接経費: 600千円)
1998年度: 1,700千円 (直接経費: 1,700千円)
|
キーワード | 神経回路モデル / ネオコグニトロン / 3次元物体認識 / IT野 / 物体認識 |
研究概要 |
我々は4層の多層構造を持つ神経回路モデルを構築し、この神経回路モデルに対してコンピュータグラフィクスなどを用いて3D図形を生成してシミュレーションによる認識実験を行なった。神経回路モデルの詳細部分は実際の脳の神経系の反応特性と比較し、最終層での反応特性がある程度一致するまでパラメータチューニングを行なった。過去の文献よると、高次視覚領野(サルのIT野)などに複雑な図形を与えた場合の反応では、多数の細胞が、物体のある一部分から見た特定の像に依存した反応特性を示すことが知られている。さらに物体を回転させるなどして、像を変形させると、徐々に反応のレベルが落ちてくることが知られていることがわかった。我々は、この神経回路モデルに3次元物体を学習させ、自己組織化させた上で、学習した像から、物体を回転・拡大・縮小・平行移動などの変形を行い、どのような特性を示すのかを検討した。我々の構築した神経回路モデルでは生理実験で調べられている限りの上での不整合は見られなかった。その結果を確認した上で我々はどのような空間フィルタが形成されているかを調べ、物体の角や、T-ジャンクションと呼ばれる部分のフィルタが多数形成されているのを確認した。これらのフィルタは2次元物体を識別する際に重要な特徴と考えられており、3次元物体の認識を行う際にも重要な特徴であるということが確認できた。
|