研究分担者 |
菱田 俊明 新潟大学, 工学部, 講師 (60257243)
森本 浩子 明治大学, 理工学部, 教授 (50061974)
室谷 義昭 早稲田大学, 理工学部, 教授 (90063718)
杉山 由恵 早稲田大学, 理工学部, 助手 (60308210)
石渡 恵美子 早稲田大学, 理工学部, 助手 (30287958)
|
研究概要 |
1.森本はY字型の柱状領域においてNavier-Stokes方程式の定常問題を考えた.領域が軸対称であることを仮定し,境界値も解も軸対称であることを仮定して解の存在を示した.これは,アミックによる有界領域での結果のY字領域への拡張である.領域が非有界であることから,アミックの場合と本質的にことなる困難が生じた.藤田により開発された,仮想の溝を掘って流れを流すという方法を拡張し,無限遠方でのポアズイ流の構成を行うことで,この困難を解消することが出来た. 2.菱田は物体が非圧縮性流体中にある物体が回転している場合の流体の流れについての数学的解析を行った.通常のNavier-Stokes方程式にx×∇なる形の変係数でしかも非有界な係数のつく,取り扱いに困難な作用素である.今までにこの様な作用素の解析は無く,新しい解析を要求される問題である.本年度までの研究では,部分積分することにより得られる,保存量と全空間での精緻な解析を駆使して,少なくとも対応する線形問題がL_p枠においてC_0半群をなすことを示し,対応する非線形問題を時間局所的に解いた.さらに,解の正則性についての考察を行った. 3.柴田は,清水とともに,弾性体の方程式のレゾルベント問題で開発したL_p評価を求める方法を拡張してStokes方程式のレゾルベント問題のNeumann型の境界値問題に関するL_p評価を行った.また,院生の秋山とともに,Ginzburg-Landau方程式の定数定常解の安定性を磁場がある場合に示した.さらに,院生の阿部と2枚の板の間を流れる非圧縮性粘性流体を記述するStokes方程式の粘着性境界条件のもとでのレゾルベント問題を考え,正則半群が生成される事を示した.さらにこれは指数的な安定性をもつ事を示し,対応する非線形問題の初期値問題を解いた.これらの解法は実解析的手法に基づいており,さらなる発展が粘性流体の自由境界値問題などへ見込まれる.
|