研究概要 |
1.[結び目をなす球の配列について]単位球の巡回列で結び目を作るとき,15球あれば可能である.距離が2+√<2>離れた2枚の平行な平面の間にはさむことができる単位球の巡回列の場合は,結び目を作るのに16球以上必要で,三葉結び目の場合に限り,ちょうど16球で作れる.球の大きさがまちまちでよければ,12球で結び目を作ることができる. 2.[球の配列によるグラフの実現について]3次元空間内で,グラフの各頂点を球で,各辺を,球と球を結ぶ球の列からなる鎖で実現する.ただし,球どうしはオーバーラップしないものとする.頂点数nの完全グラフの実現に必要な球の最小個数b_nについてc_1n^3<b_n<c_2n^3lognなる評価を得た.すべてがテーブルの上に置かれている球の族でグラフを実現する場合も,必要な個数について類似の評価を得た. 3.[球の族を刺す直線について]d-次元空間R^d内の互いに交わらないn個の球の族Fに対して,ある方向を選べば,その方向の直線ではO√<(1+logλ)nlogn>より多くの球を刺すことはできない.ただし,λ=(最大半径)/(最小半径)である.一方,任意のn【greater than or equal】dについて,R^d内のn個の球からなるある族Fでは,どんな方向を指定しても,その方向のある直線でFの中のn-d+1個以上の球を刺すことができる.テーブルの上に置かれている球の族を,垂直な直線で刺す場合についても,刺す個数の平均の上限の評価を得た. 4.[球の族の平面による分割について]R^3内の互いに交わらないn個の球の族については,logλ=ο((n/logn)^<1/3>)なら,どちら側にも約半数の無傷な球が残るように,その族を一枚の平面で切ることができる.
|