• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

非磁性非晶金属における正のホール係数

研究課題

研究課題/領域番号 11640353
研究種目

基盤研究(C)

配分区分補助金
応募区分一般
研究分野 固体物性Ⅱ(磁性・金属・低温)
研究機関島根大学

研究代表者

伊藤 正樹  島根大学, 総合理工学部, 教授 (90184689)

研究分担者 田中 宏志  島根大学, 総合理工学部, 助教授 (10284019)
研究期間 (年度) 1999 – 2000
研究課題ステータス 完了 (2000年度)
配分額 *注記
2,300千円 (直接経費: 2,300千円)
2000年度: 800千円 (直接経費: 800千円)
1999年度: 1,500千円 (直接経費: 1,500千円)
キーワードホール効果 / 電子輸送 / 液体金属 / 金属ガラス / グリーン関数 / パイエルス近似 / 第一原理計算 / 電子・正孔対称性 / 輸送係数 / 計算物理 / 直交多項式 / アモルファス金属
研究概要

本研究においては、伊藤の厳密公式を用いて、ホール効果における反磁性電流の寄与と、タイトバインディング理論におけるパイエルス近似との関係が詳しく調べられた。パイエルス位相因子は、電子の古典的運動経路からの寄与に相当すること、反磁性電流を完全に考慮するためには非古典的経路からの寄与を必要とすることが明らかにされた。また単一バンドの研究から、反磁性電流を完全に考慮すれば、ホール伝導の電子・正孔対称性が回復されることが確認された。
さらに、厳密な公式に平均場理論を適用して、液体3d遷移金属の電気伝導度とホール効果を扱った。立方行列の方法を導入し、多重バンドの場合に現れるベクトル型およびテンソル型のバーテックス関数に関する積分方程式を、1次元に還元することができた。これを応用し、ハリソンの固体元素表を用いて、電気伝導度については定量的に良い結果を得た。しかしp軌道の方向性を無視したこの扱いは、ホール係数を正しく与えないことも確かめられた。
また、本研究では、飛躍的に大きな系を扱う新しい計算方法として、直交多項式展開法を開発した。ホール係数は4つのグリーン関数を含む相関関数で与えられるので、十分に大きな系で計算しなければならず、またデルタ関数に有限の幅を与えてゼロに内挿する操作も避けられない。直交多項式法は連分数展開法に比較して驚異的に高精度であり、また時間発展を追う方法に比較して、1桁以上高速のパフォーマンスを有するため、この要請に応えられる。これは2次元正方格子のモデル計算によって確かめられた。また、通常用いられるすべての特殊関数について、必要な展開係数を解析的表現で与えた。
今後は、平均場近似についてはp軌道を含めた計算を行うこと、また第一原理計算については、より大きな系での計算を行うことが課題である。とくに、多成分系を取り扱う場合には、粒子数を少なくとも1桁以上増やさなければならない。また、直交多項式展開の方法によって、磁場中の波束の運動を実空間で追いかける可能性が開かれた。これは強磁場中での電子輸送をも視野に入れた、今後の大きな課題である。

報告書

(3件)
  • 2000 実績報告書   研究成果報告書概要
  • 1999 実績報告書
  • 研究成果

    (12件)

すべて その他

すべて 文献書誌 (12件)

  • [文献書誌] 国島,伊藤,田中: "A new method to calculate the Green function by Polynomial expansion"Prog.Theor.Phys.Supple.. No.138. 149-150 (2000)

    • 説明
      「研究成果報告書概要(和文)」より
    • 関連する報告書
      2000 研究成果報告書概要
  • [文献書誌] 田中,国島,伊藤: "Efficient scheme to calculate Green functions by recursive polynomial expansion"RIKEN Review. No.29. 20-24 (2000)

    • 説明
      「研究成果報告書概要(和文)」より
    • 関連する報告書
      2000 研究成果報告書概要
  • [文献書誌] 国島,伊藤,田中: "Generalized Polynomial Expansion of Green's functions with applications to electronic structure calculations"Statistical Physics, AIP Conference Proceedings. CP519. 350-352 (2000)

    • 説明
      「研究成果報告書概要(和文)」より
    • 関連する報告書
      2000 研究成果報告書概要
  • [文献書誌] Kunishima M, Itoh M and Tanaka H: "A new method to calculate the Green function by Polynomial expansion"Prog.Theor.Phys.Supple.. No.138. 149-150 (2000)

    • 説明
      「研究成果報告書概要(欧文)」より
    • 関連する報告書
      2000 研究成果報告書概要
  • [文献書誌] Tanaka H, Kunushima W and Itoh M: "Efficient scheme to calculate Green functions by Recursive polynomial expansion"RIKEN Review. No.29. 20-24 (2000)

    • 説明
      「研究成果報告書概要(欧文)」より
    • 関連する報告書
      2000 研究成果報告書概要
  • [文献書誌] Kunishima W, Itoh M and Tanaka H: "Generalized Polynomial Expansion of Green's function With applications to electronic structure calculations"Statistical Physics, AIP Conference Proceedings. CP519. 350-352 (2000)

    • 説明
      「研究成果報告書概要(欧文)」より
    • 関連する報告書
      2000 研究成果報告書概要
  • [文献書誌] 国島,伊藤,田中: "A new method to calculate the Green function by polynomial expansion"Prog.Theor.Phys.Supple.. No138. 149-150 (2000)

    • 関連する報告書
      2000 実績報告書
  • [文献書誌] 国島,伊藤,田中: "Generalized Polynomial expansion of Green's function with application to electronic structure calculations"Statistical Physics, AIP Conference proceedings. CP519. 350-352 (2000)

    • 関連する報告書
      2000 実績報告書
  • [文献書誌] 田中,国島,伊藤: "Efficient Scheme to calculate the Green funotion by recursive polynomial expansion"RIKEN Reviews. No29. 20-24 (2000)

    • 関連する報告書
      2000 実績報告書
  • [文献書誌] 国島,伊藤,田中: "A new method to calculate the Green function by pelynomial srpansion"Prog. Theor. Phys. Supple.. (in press). (2000)

    • 関連する報告書
      1999 実績報告書
  • [文献書誌] 国島,伊藤,田中: "Generalized potynruial expansion of Green's function with application to electo*** strueture calculations"AIP Proceeding series (to be published). (2000)

    • 関連する報告書
      1999 実績報告書
  • [文献書誌] 田中,国島,伊藤: "Efficient scheme to calcuate the Green function by recurire polyuomise expansion"Proceedings of "Riken Sympasium". (2000)

    • 関連する報告書
      1999 実績報告書

URL: 

公開日: 1999-04-01   更新日: 2020-05-15  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi