• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

楕円形作用素,特に、ラプラス作用素の幾何学

研究課題

研究課題/領域番号 11740038
研究種目

奨励研究(A)

配分区分補助金
研究分野 幾何学
研究機関静岡大学

研究代表者

久村 裕憲  静岡大学, 理学部, 講師 (30283336)

研究期間 (年度) 1999 – 2000
研究課題ステータス 完了 (2000年度)
配分額 *注記
2,200千円 (直接経費: 2,200千円)
2000年度: 900千円 (直接経費: 900千円)
1999年度: 1,300千円 (直接経費: 1,300千円)
キーワードラプラス作用素 / 熱核 / スペクトル / Nash不等式 / Sobolev不等式 / Poincare不等式
研究概要

今年度は、多様体上で成り立つ解析的不等式と、その定数に表れる、多様体の幾何との間の関係について主に研究した。具体的には、以下のような研究成果を得た。体積の局所doubling条件と局所的弱ノイマン-ポワンカレ不等式の成立、及び、ウェイト関数の境界挙動の条件下で、ウェイト付き測度に関する大域的なノイマン-ナッシュの不等式を条件内の定数のみを使って示した。これは特に、ノイマン境界条件付きの熱核の長時間的上限を示したことと同値である。従って、この結果は、特に、大域的なノイマン-ポワンカレ不等式の成立を意味し、オーデン、スン、ワンの結果を一般化している。また、大域的なノイマン-ナッシュの不等式は境界まで込めた距離球の体積の下からの評価を意味し、そのこととサロフーコステの定理を使うと、局所的なノイマン-ナッシュ不等式の族の成立と、熱方程式の正値解の局所一様ハルナック不等式の成立とは同値であることが分かった。また、この結果の応用として、リッチ曲率が下から定数で抑えられ、境界の(外向き単位垂直ベクトル場に関する)第二基本形式が上から定数で押さえられた、なだらかな境界を持った連結、コンパクトなリーマン多様体に対して、そのディリクレ境界条件付きのラプラシアンの最初の2つの固有値のギャップの下限をその多様体の幾何で表現することが出来ることが分かった。また、これらの成果を次のタイトルのプレプリントとしてまとめた。Nash inequalities for compact manifolds with boundary,preprint.

報告書

(2件)
  • 2000 実績報告書
  • 1999 実績報告書
  • 研究成果

    (1件)

すべて その他

すべて 文献書誌 (1件)

  • [文献書誌] Hironori Kumura: "A note on the absence of eigenvalues on negatively curved manifolds "Kyushu J.Math.. (発表予定).

    • 関連する報告書
      2000 実績報告書

URL: 

公開日: 1999-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi