• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

幾何学的な構造と特異性をもつ非線形退化放物型方程式の広義解に対する近似理論の研究

研究課題

研究課題/領域番号 11740108
研究種目

奨励研究(A)

配分区分補助金
研究分野 大域解析学
研究機関金沢大学

研究代表者

後藤 俊一  金沢大学, 理学部, 助教授 (30225651)

研究期間 (年度) 1999 – 2000
研究課題ステータス 完了 (2000年度)
配分額 *注記
2,100千円 (直接経費: 2,100千円)
2000年度: 1,200千円 (直接経費: 1,200千円)
1999年度: 900千円 (直接経費: 900千円)
キーワード粘性解 / dynamic boundary condition / 平均曲率流 / 比較原理
研究概要

本年度の研究では、あるHamilton-Jacobi方程式の境界値問題について、空間次元が1の場合ではあるが、dynamic boundary conditionを与え、それに対して粘性解理論を展開した。即ち、(1)粘性解を定義し、(2)比較定理を証明し、(3)解の構成を行った。
Dynamic boundary conditionについては、Hintermann、 Escher、 Guidettiらを除くとまだあまり研究がなされていない。粘性解理論としても同様である。我々の研究(1)(2)(3)は、Neumann型の境界条件の場合であればよく知られているが、それをそのまま適用することはできない。
実際、(a)境界に対するbarriorの方法がうまく機能しないために、境界近傍での劣解と優解との比較が困難であったり、(b)粘性消滅法による解の構成を行うときに、普通に考えられる近似方程式の解については一様評価が得にくかったりした。これらの困難を解決するために、(c)境界条件を置き換えて同値な定義を導入した。これは、粘性解としては同値になるが、もし古典解があれば境界条件が異なるので同値にはならないという不思議なものである。
この研究結果については、論文の投稿を準備中である。
上で述べたHamilton-Jacobi方程式は、超伝導に関するChapmanの理論から導かれるものであるが、我々は平均曲率流モデルに対するdynamic boundary conditionの問題を扱うための準備的な研究とも位置付けている。

報告書

(2件)
  • 2000 実績報告書
  • 1999 実績報告書
  • 研究成果

    (2件)

すべて その他

すべて 文献書誌 (2件)

  • [文献書誌] 森望,後藤俊一: "平均曲率流方程式のDirichlet型境界値問題に対する数値実験"京都大学数理解析研究所講究録. 1123. 30-34 (2000)

    • 関連する報告書
      2000 実績報告書
  • [文献書誌] 森望、後藤俊一: "平均曲率流方程式のDirichlet型境界値問題に対する数値実験"京都大学数理解析研究所講究緑. (2000)

    • 関連する報告書
      1999 実績報告書

URL: 

公開日: 1999-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi