研究概要 |
本研究は、集光太陽熱を化学エネルギー(化学燃料:CO及びH_2)へ高効率で転換する、二酸化炭素による石炭のソーラーガス化システムを構築することを目的として、太陽光石炭ガス化反応に高活性を示す触媒の開発を行うものである。触媒には、石炭灰からの分離回収が可能であることが必要であり、その分離回収プロセスも検討する。 1 本研究では、ZnO、In_2O_3触媒を高温(1000-1300℃)でZn(g),In_2O(g)として石炭灰から気化分離し、直ちに酸化することでZnO、In_2O_3として回収、再利用するプロセスを提案している。小型の反応器を使って、石炭の固定相ガス化の後、ZnO、In_2O_3触媒の高温分離を1150℃においてメタン-CO_2混合ガス気流中で試験した。95〜98%のZn、Inが石炭灰から気化分離された。反応器出口に設置した冷却トラップには、それぞれZnO,In_2O_3粒子が析出し、Zn(g),In_2O(g)を通して触媒が高効率で分離できることが見出された。 2 鉄酸化物触媒(Fe_2O_3あるいはFe_3O_4)は安価で環境に無害であり、ガス化後の鉄を含んだ石炭灰は、製鉄プラントの高炉に導入して容易に鉄を製鉄として回収できる。そこで赤外線照射小型流動層ガス化装置により触媒活性を試験した。その結果、含有率10wt%、800-900℃でガス化速度を1.5〜2倍に向上させる活性のあることが見出された。 3 小型の石炭流動層反応器を使って3KWキセノンランプ模擬太陽光の直接照射により、ZnO、In_2O_3、Fe_3O_4触媒の石炭ガス化活性を試験した。照射光エネルギー密度は最大で480kWm^<-2>までしか上げることができなかったが、太陽光/化学エネルギー転換率がIn_2O_3触媒(8wt%)により3倍(6%)に向上できることが見出された。
|