研究課題/領域番号 |
11F01319
|
研究種目 |
特別研究員奨励費
|
配分区分 | 補助金 |
応募区分 | 外国 |
研究分野 |
幾何学
|
研究機関 | 早稲田大学 (2012-2013) 首都大学東京 (2011) |
研究代表者 |
GUEST Martin (2013) 早稲田大学, 理工学術院, 教授
GUEST Martin (2012) 早稲田大学, 理工学術院, 教授
MARTIN Guest (2011) 首都大学東京, 理工学研究科, 教授
|
研究分担者 |
LI Ping 早稲田大学, 理工学術院, 外国人特別研究員
LI Ping 早稲田大学, 理工学術院, 外国人特別研究員
PING Li 首都大学東京, 理工学研究科, 外国人特別研究員
|
研究期間 (年度) |
2011 – 2013
|
研究課題ステータス |
完了 (2013年度)
|
配分額 *注記 |
2,000千円 (直接経費: 2,000千円)
2013年度: 600千円 (直接経費: 600千円)
2012年度: 800千円 (直接経費: 800千円)
2011年度: 600千円 (直接経費: 600千円)
|
キーワード | 幾何当 / 可積分系 / 量子コホモロジー / 旗多様体 / 幾何学 |
研究概要 |
tt*方程式とHitchin-Kobayashi対応の関係を検討した。 また、所属研究機関において受入研究者の主催するセミナーで量子コホモロジーとモジュラ空間についてのセミナー・研究を行った。 Kahler多様体の幾何学的な構造(特にS^1の作用のrigidity)の論文が完成した。 4月21日-24日 "two features of chiy genus, their applications and generalizations"(京都大学) 6月24日-6月28日 The Second Pacific Rim Mathematical Association Congress (Shanghai Jiao Tong University) 6月30日-7月2日 Workshop on Mathematics of String Theory (Center of Mathematical Sciences, Zhejiang University) "Two features of chiy genus and some applications" 7月14日-7月19日 The Sixth International Congress of Chinese Mathematicians Taipei 5月31日・6月7日 組織委員として以下のワークショップを開催した。 OCAMI-TIMS@WASEDA workshop on Integrable systems, modular forms, and related applications http://www.f.waseda.jp/martin/conf/2013ocamitimswaseda.html
|
今後の研究の推進方策 |
マーティン・ゲストと乙藤隆史との共同研究として、点付き球面上のベクトル束のモジュライ空間に関するAghinotri-Woodward, BelkaleやTeleman-Woodwardの研究をさらに発展させる予定である。これらの研究者は、モジュライ空間と旗多様体の量子コホロモジーとの関係を与えたが、我々はこれらの対象と量子D加群ならびに可積分系との関連について研究する。このためにマーティン・ゲストと乙藤隆史は2014年5月に同済大学(上海)を訪問する予定である。
|