研究分担者 |
今井 潤 NTT(持株会社), コミュニケーション科学基礎研究所, 主任研究員
中山 功 名古屋商科大学, 経営情報学部, 教授 (80164359)
代田 典久 SONY(株), インフォメーション&ネットワーク研究所, 統括部長
近藤 弘一 同志社大学, 工学部, 専任講師 (30314397)
岡崎 龍太郎 同志社大学, 工学部, 専任講師 (20268113)
|
配分額 *注記 |
7,300千円 (直接経費: 7,300千円)
2003年度: 1,300千円 (直接経費: 1,300千円)
2002年度: 2,200千円 (直接経費: 2,200千円)
2001年度: 1,200千円 (直接経費: 1,200千円)
2000年度: 2,600千円 (直接経費: 2,600千円)
|
研究概要 |
Caratheodoryの補間問題などに登場するPerronの連分数についてはChebyshev連分数のqdアルゴリズムに相当する計算量O(N^2)の連分数展開算法は知られていなかった.これに対して,まず,単位円周上の直交多項式の理論を基礎として,直交多項式の3項漸化式をLax表示とする新しい可積分系Schurフローを導出し,その差分化によって離散時間Schurフローの漸化式を与えた.さらに,離散時間SchurフローによるO(N^2)の計算量のPerron連分数展開アルゴリズムと代数方程式の零点計算アルゴリズムを定式化した.これにより, 1)古典直交多項式-Chebyshev連分数-Toda方程式, 2)単位円周上の直交多項式-Perronの連分数-Schurフロー という対応図式が完成した. Thronの連分数の計算アルゴリズムの開発にも取り組んだ.まず,双直交多項式の3項間漸化式をLax表示とする可積分系である相対論戸田方程式に注目し,その可積分な離散化によって離散時間相対論戸田方程式のタウ関数解を見い出した.さらに,このタウ関数解の漸化式を用いて,Thronの連分数をO(N^3)の計算量で計算する連分数展開アルゴリズムを定式化した.従来,Thronの連分数については離散可積分系に基づく算法は知られていなかった.通常のFGアルゴリズムでは分母が零となり計算できない場合でも本アルゴリズムによって連分数が求められることもわかった. また,第2種Painleve方程式PIIの解のBacklund変換をLax対の両立条件としで表し,さらに,Lax対のひとつを直交多項式の3項間漸化式とみて,直交多項式に関連した連分数の係数がBacklund変換により相互に代数的に結ばれることを示した.この連分数がAiry関数のLaplace変換の連分数展開を与えることを証明した.
|