研究課題/領域番号 |
12740038
|
研究種目 |
奨励研究(A)
|
配分区分 | 補助金 |
研究分野 |
幾何学
|
研究機関 | 京都大学 |
研究代表者 |
高橋 篤史 京都大学, 数理解析研究所, 助手 (50314290)
|
研究期間 (年度) |
2000 – 2001
|
研究課題ステータス |
完了 (2001年度)
|
配分額 *注記 |
2,100千円 (直接経費: 2,100千円)
2001年度: 900千円 (直接経費: 900千円)
2000年度: 1,200千円 (直接経費: 1,200千円)
|
キーワード | ミラー対照性 / グロモフ-ウィッテン不変量 / カラビ・ヤウ多様体 / ミラー対称性 |
研究概要 |
「ミラー対称性の数学的構造に関する研究」のため、本年度は「グロモフ-ウィッテン不変量の理論」の「連接層のモジュライ空間」による記述および「原始形式の理論」、「小平-スペンサー重力場の理論」による数学的に厳密なB模型の構成、の研究を行なってきた。 とくに弦双対性における「Dブレーン」の観点に注目することにより、次のような成果・知見を得た。 1 導来圏の対象に対する安定性の定義がダグラス達によって試みられているが、彼らの「定義」は一般的には自己引用の危険性があり不満足である。しかし物理的議論を用いれば巨大体積極限においては通常の連接層に対する安定性に帰着されうること、また、以前我々が(安定な連接層によって)数学的に定式化した「BPS不変量」は、導来圏の対象から再定義できる可能性があることが判明した。これはドゥブロビン・ギーベンタールによる半単純量子コホモロジーの再構成定理のカラビ・ヤウ多様体に対する類似を与えるため、今後非常に重要な研究対象となると考えている。 2 物理学者ゴパクマー-ヴァファによる「グロモフーウイッテン不変量」と「BPS不変量」の等価性に関する予想に対して、知られているほとんどの具体例において数学的に厳密な証明を与えた。 3 閉じたB型位相的弦理論は、「半無限次元偏極ホッジ構造の変形」および「原始形式の理論」を用いて定式化され、その相関関数の母函数は佐藤グラスマン多様体のタウ函数として記述されるべきであるという方針が得られた。これはウィッテン-コンセビッチによる結果が、ミラー対称性のアイデアとともに高次元の場合陶然に拡張されることを示唆する。非自明な具体例を計算することが今後の課題となっている。
|