• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

空間グラフの位相幾何学的研究

研究課題

研究課題/領域番号 12740050
研究種目

奨励研究(A)

配分区分補助金
研究分野 幾何学
研究機関早稲田大学 (2001)
東京女子大学 (2000)

研究代表者

谷山 公規  早稲田大学, 教育学部, 助教授 (10247207)

研究期間 (年度) 2000 – 2001
研究課題ステータス 完了 (2001年度)
配分額 *注記
2,100千円 (直接経費: 2,100千円)
2001年度: 1,000千円 (直接経費: 1,000千円)
2000年度: 1,100千円 (直接経費: 1,100千円)
キーワード結び目 / 絡み目 / 空間グラフ / バシリエフ不変量 / 同相分割 / 特定可能射影 / 既約空間グラフ
研究概要

1.安原晃氏(東京学芸大学)との共同研究において、いくつかのグラフについてその空間埋め込みの構成結び目集合の完全な特徴付けを行なった。またいくつかのグラフについてはその空間埋め込みの構成2成分絡み目集合の完全な特徴付けを行なった。前者は結び目のConway多項式の2次の係数の言葉で、後者は絡み数の言葉でなされる。証明の手法としては空間グラフのデルタ分類とクラスプ・パス分類の理論と結び目・絡み目のバンド表示の理論を使った。
2. George Washington UniversityのJozef Przytycki氏との共同研究において、金信泰造氏(大阪市立大学)と宮澤康行氏(山口大学)が提出した絡み目のHOMFLY多項式の係数に関する予想を肯定的に証明することで解決した。証明には絡み目のsimilarityの概念とVassiliev-Gusarov moduleのアナロジーを用いた。
3.大山淑之氏(名古屋工業大学)との共同研究において空間グラフ内の結び目のバシリエフ不変量達の間の関係について考察した。具体的にはそれらの適当な和がいつグラフの埋め込みによらない不変量になるかならないか、またいつ埋め込みの頂点ホモトピー不変量になるかならないか、またいつ埋め込みの辺ホモトピー不変量になるかならないかを決定した。
4.空間グラフは分離可能であるかまたはグラフと1点で交わりグラフを2つに分ける球面が存在するとき可約であると呼ばれる。空間内の位相的円板で空間グラフに対してある種の位置にあるものに対してそれを縮約して得られる空間グラフが可約でなければもとの空間グラフも可約でないことを証明した。これによっていくつかの空間グラフの非自明性が簡単に示せるようになった。

報告書

(2件)
  • 2001 実績報告書
  • 2000 実績報告書
  • 研究成果

    (9件)

すべて その他

すべて 文献書誌 (9件)

  • [文献書誌] K.Taniyama, A.Yasuhara: "Realization of knots and links in a spatial graph"Topology and its applications. 112・1. 87-109 (2001)

    • 関連する報告書
      2001 実績報告書
  • [文献書誌] J.Prazytycki, K.Taniyama: "The Kanenobu-Miyanawa Conjecture and the Vassiliev-Gusarov skein modules based on mixed crossings"Proceedings of American Mathematical Society. 129. 2799-2802 (2001)

    • 関連する報告書
      2001 実績報告書
  • [文献書誌] Y.Ohyama, K.Taniyama: "Vassiliev invariants of Knots in a spatial graph"Pacific Journal of Mathematics. 200. 191-205 (2001)

    • 関連する報告書
      2001 実績報告書
  • [文献書誌] K.Taniyama: "Irreducibility of spatial graphs"Journal of Knot theory and its Ramifications. 11・1. 121-124 (2002)

    • 関連する報告書
      2001 実績報告書
  • [文献書誌] Kouki Taniyama: "Higher dimensional links in a simplicial complex embedded in a sphere"Pacific Journal of Mathematics. 194No.2. 465-467 (2000)

    • 関連する報告書
      2000 実績報告書
  • [文献書誌] Kouki Taniyama (with Yoshiyoki Ohyama): "Vassiliev invariants of knots in a spatial graph"Pacific Journal of Mathematics. (to appear).

    • 関連する報告書
      2000 実績報告書
  • [文献書誌] Kouki Taniyama: "Dividing a topological space into mutually disjoint and mutually homeomorphic subspaces"Topology and its applications. (to appear).

    • 関連する報告書
      2000 実績報告書
  • [文献書誌] Kouki Taniyama (with Yoshiyoki Ohyama and Shuji Yamada): "Realization of Vassiliev invariants by unknotting number one knots"Tokyo Journal of Mathematics. (to appear).

    • 関連する報告書
      2000 実績報告書
  • [文献書誌] Kouki Taniyama (with Jozef Przytycki): "The Kanenobu-Miyazawa conjecture and the Vassiliev-Gusarov skein modules based on mixed crossings"Proceedings of the American Mathematical Society. (to appear).

    • 関連する報告書
      2000 実績報告書

URL: 

公開日: 2000-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi