研究概要 |
近年, マイクロ流体デバイスにおいて電気的制御による液滴操作技術に対する関心が高まっている. 本研究では, MEMSピラー構造を用いた超撥液表面での濡れ性・電気的安定性の現象解明とその最適設計に基づいた液滴デバイスの開発に取り組んでいる. 現在までに, MEMS技術を用いて製作される周期的ナノピラー構造を用いた超撥液性表面を用いた液滴輸送において, 液滴とピラー表面間に空気層を形成するCassie-Baxter状態を保持する観点から, 液滴の静的・動的接触角ヒステリシス特性および電圧印可に対する液滴速度をモデル予測し, 抵抗力の評価を行った. 特に, 固体面積割合を一定とした周期的ナノピラー構造を形成し, 静的・動的接触角特性に及ぼすピッチの影響を実験的に調査した. 平成25年度には, MEMSピラー構造の静的/動的接触角特性を種々の液体に対して系統的に評価するとともに, 従来知見の極めて少ない電場の重畳する場におけるCassie-Baxter状態の静電気的安定特性に対する実用モデルを開発し, 電気的制御による高速液滴輸送を実現するための検討を実験および理論解析の両面から推進した. 今後, 現在までに開発したMEMSピラー構造を超撥水/超撥液性表面に応用し, 電気的制御による高速液滴操作技術の開発に取り組むことを予定している. MEMSピラー構造の超撥液特性に対する系統的評価を継続し, デバイス応用への基礎データを整備するとともに機能性表面を実現するためのMEMSプロセスに対する検討を進め, 低電圧での高速液滴操作が可能なマイクロ流体デバイス応用に向けた最適設計指針を獲得することを目指す.
|