• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

ネター多元環における導来同値とその不変量である自己移入次元の有限性に関する研究

研究課題

研究課題/領域番号 12J02105
研究種目

特別研究員奨励費

配分区分補助金
応募区分国内
研究分野 代数学
研究機関筑波大学

研究代表者

古賀 寛尚  筑波大学, 数理物質系, 特別研究員(PD)

研究期間 (年度) 2012 – 2013
研究課題ステータス 完了 (2013年度)
配分額 *注記
1,800千円 (直接経費: 1,800千円)
2013年度: 900千円 (直接経費: 900千円)
2012年度: 900千円 (直接経費: 900千円)
キーワード導来同値 / 傾斜鎖複体 / 傾加群 / 変異 / 自己移入次元 / ゴレンシュタイン次元
研究概要

与えられた環(単位元を持ち結合律を満たす)の表現論的構造やホモロジー代数的性質を解明するにあたり、森田同値や導来同値の概念は極めて重要な役割を果たしている。二つの環が森田同値であるとき、ホモロジー代数的性質は同一であると見做せるのである。導来同値は森田同値の導来加群圏への一般化として捉えることができる。森田同値ならば導来同値であることを注意しておく。導来同値に関して、様々な不変量が知られており、導来同値な二つの環はホモロジー代数的性質がかなり近い事が分かる。そのため導来同値を引き起こす傾斜鎖複体を多く構成し、それらについて考察することが重要であり、現在も活発に研究が進められている。その研究の一つに変異の理論がある。
本研究の目的の一つは導来同値を引き起こすネター多元環上の傾斜鎖複体及び傾加群の変異が起きるための必要条件及び十分条件を与えることであった。もう一つの目的は、導来同値の不変量である自己移入次元の有限性に関するもので、アルティン多元環に対して、両側の自己移入次元が有限であることと、任意の有限生成加群のゴレンシュタイン次元が有限であることが同値になるという星野の結果の両側ネター環への一般化を行うことであった。
本年度は、星野との共同研究により、星野の結果をネター多元環へ基礎環の素イデアルによる局駈化を用いて精密化することに成功した。さらにネター多元環が局所環である時に、自己移入次元が両側で有限になる必要十分条件を深度を用いる事で与えた。

今後の研究の推進方策

(抄録なし)

報告書

(2件)
  • 2013 実績報告書
  • 2012 実績報告書
  • 研究成果

    (4件)

すべて 2013 2012

すべて 雑誌論文 (3件) (うち査読あり 3件) 学会発表 (1件)

  • [雑誌論文] Finiteness of Selfinjective Dimension for Noetherian Algebras2013

    • 著者名/発表者名
      M. Hoshino and H. Koga
    • 雑誌名

      Comm. Algebra

      巻: 41 号: 9 ページ: 3414-3428

    • DOI

      10.1080/00927872.2012.686645

    • 関連する報告書
      2013 実績報告書
    • 査読あり
  • [雑誌論文] Semi-tilting modules and mutation2012

    • 著者名/発表者名
      H. Koga
    • 雑誌名

      Algebr. Represent. Theory (to appear). Online First.

      巻: 16 号: 5 ページ: 1469-1487

    • DOI

      10.1007/s10468-012-9365-z

    • 関連する報告書
      2012 実績報告書
    • 査読あり
  • [雑誌論文] Zaks' lemma for coherent rings2012

    • 著者名/発表者名
      M. Hoshino and H. Koga
    • 雑誌名

      Algebr. Represent. Theory (to appeal). Online First

      巻: 16 号: 6 ページ: 1647-1660

    • DOI

      10.1007/s10468-012-9376-9

    • 関連する報告書
      2012 実績報告書
    • 査読あり
  • [学会発表] Semi-tilting modules and mutation2012

    • 著者名/発表者名
      H. Koga
    • 学会等名
      ICRA 2012
    • 発表場所
      Bielefeld University, Germany
    • 年月日
      2012-08-17
    • 関連する報告書
      2012 実績報告書

URL: 

公開日: 2013-04-25   更新日: 2024-03-26  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi