• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

計算幾何を用いた高品質イメージ検索システムに関する研究

研究課題

研究課題/領域番号 12J07851
研究種目

特別研究員奨励費

配分区分補助金
応募区分国内
研究分野 情報学基礎
研究機関東北大学

研究代表者

ガオタントン ナスダ  東北大学, 大学院情報科学研究科, 特別研究員(DC2)

研究期間 (年度) 2012 – 2013
研究課題ステータス 完了 (2013年度)
配分額 *注記
1,800千円 (直接経費: 1,800千円)
2013年度: 900千円 (直接経費: 900千円)
2012年度: 900千円 (直接経費: 900千円)
キーワードShape descritor / Pattern matching / Image retrieval / イメージ検索 / 計算幾何 / アルゴリズム / イメージセグメンテーション
研究概要

The objective of this research is to improve the quality of image retrieval in a real-world application to be as high as successful a text retrieval method. We focus on applying shape feature of main objects, which are extracted from a query image, for identifying similarity among images. Two algorithms are proposed. The first one is for improving the time complexity when applying the shape similarity measure. The second algorithm is for improving the quality of the image segmentation when using base-monotone regions. Also to allow the system to be able to automatically locate the important objects.
In this research, the shape similarity measure called Modified Hausdorff Distance is applied. Given two set of boundary points P and Q, to compare the two shapes using the Modified Hausdorff Distance, one shape needs to be aligned on the other. The Modified Hausdorff Distance is the average distance of the closest points between the points on the two shape boundary. To obtain an optimal simi … もっと見る larity measure, the shapes must be aligned to the most similar part of each other. In a naive method, all pairs of points are applied for finding the optimal transformation. Therefore, the time complexity is cubic in the size of the boundary points.
Instead of applying all possible transformation, we proposed a method which applies a pair of correspondence points for mapping the two shapes to the similar part of each other. We also proposed a shape descriptor called a Local Distance Interior Ratio (LDIR) for describing the shape between a feature point and every other boundary points. A pair of points such that the LDIR are similar is called a correspondence. By using the correspondence points, the time complexity for computing the Modified Hausdorff Distance is improved. Moreover, the quality of the retrieved result is as good as applying the naive method.
To deal with the large size of image database, it is important for the system to be able to locate and extract the shape contour of the important objects in an image automatically. We proposed a semi-automatic image segmentation algorithm. We employ an algorithm called a room-edge region for removing background region. In order to segment an image containing multiple objects, it can be segmented by decomposing the given pixel grid into small subgrids and apply the room-edge region for each subgrids. One limitation is'the quality of the segmented result depends on decomposition of the subgrids.
We present two algorithms for decomposing an image optimally. The first one is called a quadtree decomposition, which an image is optimally decomposed using the quadtree structure. The second on is called an optimal baseline location, which optimally placed a partition lines.
In the future, we plan to apply machine learning methods and other features such as color for improving the quality of the retrieved result. Moreover, the label attached to the image is taken into consideration in order to widening the scope of the search. 隠す

今後の研究の推進方策

(抄録なし)

報告書

(2件)
  • 2013 実績報告書
  • 2012 実績報告書
  • 研究成果

    (9件)

すべて 2013 2012

すべて 雑誌論文 (4件) (うち査読あり 4件、 オープンアクセス 1件) 学会発表 (5件)

  • [雑誌論文] Base-object location problems for base-monotone regions2013

    • 著者名/発表者名
      J Chun, T. Horiyama, T. Ito, Natsuda Kaothanthong, H. Ono, Y. Otachi, T. Tokuyama, RUehara, and T. Uno
    • 雑誌名

      Theoretical Computer Science

      巻: 555 ページ: 71-84

    • DOI

      10.1016/j.tcs.2013.11.030

    • 関連する報告書
      2013 実績報告書
    • 査読あり / オープンアクセス
  • [雑誌論文] Classified-distance based shape descriptor for application to image retrieval2013

    • 著者名/発表者名
      J. Chun, Natsuda Kaothanth one, and T. Tokuvama
    • 雑誌名

      Computer Analysis of Images and Patterns (CAIP2013)

      巻: 8048 ページ: 1-8

    • DOI

      10.1007/978-3-642-40246-3_1

    • ISBN
      9783642402456, 9783642402463
    • 関連する報告書
      2013 実績報告書
    • 査読あり
  • [雑誌論文] Base Location Problems for Base-Monotone Regions2013

    • 著者名/発表者名
      Jinhee Chun, Takashi Horiyama, Takehiro Ito, Natsuda Kaothanthong, Hirotaka Ono, Yota Otachi, Takeshi Tokuyama, Ryuhei Uehara, Takeaki Uno
    • 雑誌名

      7^<th> International Workshop on Algorithms and Computation

      巻: 7748 ページ: 53-64

    • DOI

      10.1007/978-3-642-36065-7_7

    • ISBN
      9783642360640, 9783642360657
    • 関連する報告書
      2012 実績報告書
    • 査読あり
  • [雑誌論文] Algorithms for computing the maximiim weight region decomposable into elementary shapes2012

    • 著者名/発表者名
      Jinhee Chun, Natsuda Kaothanthong, Ryosei Kasai, Matias Korman, Martin Nollenburg, Takeshi Tokuyama
    • 雑誌名

      Computer Vision and Image Understanding

      巻: 116・7 号: 7 ページ: 803-814

    • DOI

      10.1016/j.cviu.2012.03.003

    • 関連する報告書
      2012 実績報告書
    • 査読あり
  • [学会発表] Computing shape distance using correspondence2013

    • 著者名/発表者名
      J. Chun, Natsuda Kaothanthong, T. Tokuyama
    • 学会等名
      The Japan-Korea Joint Workshop on General Optimization : Polygon containment, packing, alignment
    • 発表場所
      Okinawa, Japan
    • 年月日
      2013-10-24
    • 関連する報告書
      2013 実績報告書
  • [学会発表] Correspondens finder using classified distance distribution for efficient shape retrieval2013

    • 著者名/発表者名
      J. Chun, Natsuda Kaothanthong, T. Tokuyama
    • 学会等名
      The 16th Korea-Japan Joint Workshop on Al gorithms and Computation (WAAC2013)
    • 発表場所
      Kyonggi University, Suwon, Korea
    • 年月日
      2013-07-13
    • 関連する報告書
      2013 実績報告書
  • [学会発表] Shape Description using Classified Distances2013

    • 著者名/発表者名
      J. Chun, Natsuda Kaothanthong, T. Tokuyama
    • 学会等名
      The 6^<th> Annual Meeting of the Asian Association for Algorithms and Computation (AAAC2013)
    • 発表場所
      Matsuhima, Sendai, Japan
    • 年月日
      2013-04-20
    • 関連する報告書
      2013 実績報告書
  • [学会発表] Algorithms for computing optimal image segmentation using quadtree decomposition2012

    • 著者名/発表者名
      Jinhee Chun, Takashi Horiyama, Takehiro Ito, Natsuda Kaothanthong, Hirotaka Ono, Yota Otachi, Takeshi Tokuyama, Ryuhei Uehara, Takeaki Uno
    • 学会等名
      Thailand-Japan Joint Conference on Computational Geometry and Graphs (TJJCCGG)
    • 発表場所
      Srinakharinwirot University, Bangkok, Thailand
    • 年月日
      2012-12-06
    • 関連する報告書
      2012 実績報告書
  • [学会発表] Optimal Grid Decomposition for Maximum Weight Region Computation with Application to Image Segmentation2012

    • 著者名/発表者名
      Jinhee Chun, Natsuda Kaothanthong, Hiromi Takahashi, Takeshi Tokuyama
    • 学会等名
      Computational Geometry : Young Researchers Forum (CG : YRF)
    • 発表場所
      University of North Carolina, Chapel Hill, USA
    • 年月日
      2012-06-19
    • 関連する報告書
      2012 実績報告書

URL: 

公開日: 2013-04-25   更新日: 2024-03-26  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi