研究課題/領域番号 |
13135217
|
研究種目 |
特定領域研究
|
配分区分 | 補助金 |
審査区分 |
理工系
|
研究機関 | 愛媛大学 (2002-2006) 九州大学 (2001) |
研究代表者 |
柏 太郎 愛媛大学, 大学院・理工学研究科, 教授 (30128003)
|
研究分担者 |
江沢 康生 愛媛大学, 大学院・理工学研究科, 教授 (30036371)
川村 嘉春 信州大学, 理学部, 教授 (10224859)
井町 昌弘 山形大学, 理学部, 名誉教授 (70037208)
原田 恒司 九州大学, 理学研究院, 助教授 (00202268)
米山 博志 佐賀大学, 理工学部, 教授 (50210795)
川合 栄一郎 愛媛大学, 理学部, 助教授 (40116926)
|
研究期間 (年度) |
2001 – 2006
|
研究課題ステータス |
完了 (2006年度)
|
配分額 *注記 |
20,300千円 (直接経費: 20,300千円)
2006年度: 3,000千円 (直接経費: 3,000千円)
2005年度: 3,300千円 (直接経費: 3,300千円)
2004年度: 3,400千円 (直接経費: 3,400千円)
2003年度: 3,400千円 (直接経費: 3,400千円)
2002年度: 3,200千円 (直接経費: 3,200千円)
2001年度: 4,000千円 (直接経費: 4,000千円)
|
キーワード | 経路積分 / 補助場 / テータ項 / 最大エントロピー法 / 高階重力理論 / 高次元時空 / 大統一理論 / 異常なU(1)理論 / 高階微分 / データ項 / 繰り込み群 / オービフィールド / 3核子力 / ブレイン宇宙 / 量子情報 / 南部-Jona-Lasinio模型 / 格子ゲージ理論 / インスタントン / とじ込め / 1 / Nc展開 / 有効場理論 |
研究概要 |
経路積分での補助場の方法に関して、ボーズ・フェルミの様々な場合について解析し、近似の有効性を確かめた。0次元の場合は、双方とも、1ループまでの近似で非常に広い(結合定数に関して100万のオーダーの)範囲で十分によい値を出すことが分かった。また、フェルミ系では火線という、作用の2階微分がゼロになる現象が起きることを発見した。1次元でも同様に、1ループ近似が十分大きな領域でよい値を出すことが分かっだが、ダブルウエルのインズタントンの寄与する領域では、1ループ近似が破綻(2-ループを入れれば、かなり回復)する。これを、複数の補助場導入による解決を目指す。 Nambu-Jona-Lasinio模型の解析も行い、補助場の高次効果によっても、対称性の破れの度合いは緩やかになるものの、それが必ず回復することが必然であるどいう一部の議論を排除した。(柏) 高階微分を含む重力理論について取り組んできた。成果として、1. Buchbinder-Lyakhovich (BL)の正準形式では一般座標変換でHamiltonian密度も変換される。この問題点はBLの定式化とOstrogradskiの定式化を組み合わせることによって解決出来ることを示した。2.弦理論に必要な時空の次元がBrane描像におけるBulkの次元より大きいとして、f (R)型の一般化された重力理論の次元縮小を行った(量子宇宙論への第1段階)。3. Kaluza-Klein型の多次元時空で発生した重力波の4次元時空における伝播の仕方を調べ、内部空間の曲率が4次元時空の伝播の際には質量を与えることを具体例で示した。(江沢) 世代の起源を説明する可能性のある様々な5次元時空上の大統一理論を見つけた、および、その構造を反映した超対称化標準模型の構成粒子の質量間に成立する和則を導出した。具体的には、高次元時空上で定義されたゲージ理論から、軽い3世代の物質粒子を導く可能性を指摘した。余剰次元として1次元オービフォールドをもつ5次元大統一理論を出発点に、ゲージ群SU (N)の1多重項のゼロモードが3世代の物質粒子の大部分を構成する可能性を見つけた。さらに、いくつかの具体的な模型に関して、スカラー粒子の質量間に成立する関係式を導出した。(川村) MEM (Maximum Entropy Method)についての数値的解析を進めてきた。MEMによって、仮定する事前確率に依存してさまざまなフィットのカーブが得られるが、すべて、MCシミュレーションがもつ統計誤差の範囲に収まることが明らかになった.すなわちMEMはテータ項の「フラットごング問題」については新たな予言応力は持たないことが明らかになった。さらに、Azcoitiらが提案したimaginary theta methodをわれわれはCP (2)の弱結合領域に世界で初めて適用しh(=imaginary theta =background field for topological charge)依存性をもとめた。結果はhについて1次相転移的なstepwiseなふるまいであることを示した。数学的にはQCDにおける有限密度の問題と平行しており,類似のふるまいがQCDでも報告されている。今後この関運をさらに追求する(井町)
|