研究分担者 |
堤 誉志雄 東北大学, 大学院・理学研究科, 教授 (10180027)
柳田 英二 東北大学, 大学院・理学研究科, 教授 (80174548)
高木 泉 東北大学, 大学院・理学研究科, 教授 (40154744)
千原 浩之 東北大学, 大学院・理学研究科, 助教授 (70273068)
長澤 壯之 東北大学, 大学院・理学研究科, 助教授 (70202223)
|
研究概要 |
1.Navier-Stokes方程式に関するミレニアム問題の解説 3次元Navier-Stokes方程式の大きな初期値に対する時間大域的滑らかな解の存在問題は,2000年にクレイ研究所からミレニアムにおける数学の7つの難題のひとつとして提唱された.本研究では,Lerayによる時間大域的な弱解の存在からはじめて,Serrinによる一意正則な弱解のクラスL^s(0,T;L^r(R^n)),2/s+n/γ【less than or equal】-1を中心に総合的な解説を行った.とくに,スケール不変則に対する藤田-加藤の原理を紹介し,同方程式の時間局所的な強解C([0,T);L^n(R^n))の果たした重要性を指摘した.解の特異点集合のHausdorff次元の評価,除去可能孤立特異点の特徴付け,後進自己相似解による爆発解の非存在についても触れた.調和解析学における最近の研究成果が,Navier-Stokes方程式の考察に寄与した例を2,3挙げ,今後の研究の指針を与えた. 2.Navier-Stokes方程式の適切性と流体力学との関連 流体力学サイドにおいては,今日,計算機能力の飛躍的な進歩に伴ってNavier-Stokes方程式の解を数値実験によって求め,乱流をも含む様々な流れの場を矛盾なく説明しているようである.一方,コンピューターを用いる以前に,まずは解析計算によって解の性質を調べようと試みる古典的な純粋数学の立場もある.本研究では,Navier-Stokes方程式の数学サイドから研究を紹介し,ミレニアム問題を中心とした同方程式に関する課題を解説した.とくに,「乱流の発生が解の正則性の崩壊と対応している」との数学者の見解と,多くの流体力学者によって指示されている「乱流の発生にはの解の特異性の議論は必要ない」との知見との比較を行った.渦度が有限でとどまる限り,解の正則性が保証されることに注目し,乱流発生が渦度の挙動と密接な関係にあることを偏微分方程式の適切性に関する研究から解き明かした. 3.Navier-Stokes方程式の軟解とエネルギー等式 Navier-Stokes方程式から導かれる積分方程式の解を"軟解"(mild solution)という.Katoは,初期値α∈L^n(R^n)であれば,あるT>0とC([0,T);L^n(R^n))に属する一意的な軟解uが存在することを示した.本研究では,L^2(R^n)∩L^n(R^n)に属する初期値をもつ"すべての軟解"uはLeray-HopfクラスL^∞(0,T;L^2(R^n))∩L^2(0,T;H^1(R^n))に属し,かつエネルギー等式を満たすことを証明した.
|