研究課題/領域番号 |
13440026
|
研究種目 |
基盤研究(B)
|
配分区分 | 補助金 |
応募区分 | 一般 |
研究分野 |
幾何学
|
研究機関 | 中央大学 |
研究代表者 |
三松 佳彦 中央大学, 理工学部, 教授 (70190725)
|
研究分担者 |
三好 重明 中央大学, 理工学部, 教授 (60166212)
坪井 俊 名古屋大学, 大学院・数理科学研究科, 教授 (40114566)
佐藤 肇 名古屋大学, 大学院・多元数理科学研究科, 教授 (30011612)
高倉 樹 中央大学, 理工学部, 助教授 (30268974)
小野 薫 北海道大学, 大学院・理学研究科, 教授 (20204232)
太田 啓史 名古屋大学, 大学院・多元数理科学研究科, 教授 (50223839)
水谷 忠良 埼玉大学, 理学部, 教授 (20080492)
森吉 仁志 慶應義塾大学, 理工学部, 助教授 (00239708)
|
研究期間 (年度) |
2001 – 2003
|
研究課題ステータス |
完了 (2003年度)
|
配分額 *注記 |
8,600千円 (直接経費: 8,600千円)
2003年度: 3,600千円 (直接経費: 3,600千円)
2002年度: 2,200千円 (直接経費: 2,200千円)
2001年度: 2,800千円 (直接経費: 2,800千円)
|
キーワード | 接触構造 / 葉層構造 / symplectic構造 / 双接触構造 / Anosov流 / 葉層コホモロジー / Asymptotic Linking / Stein曲面 / Asymptotic linking / 擬正則曲線 / 概複素構造 / 射影的Anosov流 |
研究概要 |
研究代表者はasymptotic linkingという概念を経由して、3次元多様体上の接触構造の研究と葉層構造の研究を結びつける枠組みを提唱し、研究を開始した。余次元1葉層構造の側からは、異種特性類、1次の葉層コホモロジーが直接にこれに関わることが分かり、葉層構造論のサイドの枠組みが定式化された。接触構造においてはtorsion不変量がこの枠組みに強く関連することが見いだされた。又、代数的Anosov葉層の葉層コホモロジーの計算も得られ、local orbit rigidityとの関連も発見された。 三好・三松を中心とする葉層研究班では、コンパクトなStein曲面の境界に付随する3次元接触構造のfillabilityに着目し、更にこれに付随する葉層構造のThurstonの不等式を位相的に証明する研究を開始し、特殊な場合に、絶対的不等式が示された。相対的versionはこれからの課題である。又、坪井、三松を中心として、幾何構造を保つ微分同相の群の単純性の研究が押し進められ、坪井は、接触微分同相及び解析的微分同相の多くの場合に完全性を証明した。坪井は、更に、正則な双接触構造の研究も進め、Seifert多様体上で特徴付けを完成した。 小野・太田を中心とする接触構造・symplectic構造研究班では、主に二つのテーマに取り組んでいる。第一は、単純特異点や超楕円特異点のリンクとして得られる接触構造のsymplectic fillingの特徴付けである。これは上の三好・三松らの研究、及び冒頭の三松の研究に直接に関わるもので、Brieskornの仕事をsymplectic幾何の立場で見直している。Seiberg-Witten理論を使ってfillingのsymplectic構造の特徴付けにまで至った。又、symplectic topology全般の大きな基盤となる研究として、Lagrangian Floer homology論に於ける障害理論の建設を始めた。 佐藤・水谷を中心とした研究班では、より微分式系・微分方程式に近づき、接触構造・葉層構造を含めて非可積分性自体を接分布の微分幾何として研究した。
|