配分額 *注記 |
3,500千円 (直接経費: 3,500千円)
2003年度: 1,000千円 (直接経費: 1,000千円)
2002年度: 1,000千円 (直接経費: 1,000千円)
2001年度: 1,500千円 (直接経費: 1,500千円)
|
研究概要 |
研究課題名のもとに,離散群のケーリーグラフや距離正則グラフなど,何らかの対称性によって特徴づけられる巨大な系の統計的性質を,調和解析・表現論の方法を用いてスペクトルの漸近解析とスケーリング極限の観点から読み取るのが,本研究の大枠であった。当初の研究目的はおおむね達成されたと考える。具体的には,以下の項目に述べるような成果を得た。 1.量子中心極限定理の枠組に則って,グラフの隣接作用素のスペクトル分布のスケーリング極限の計算を行った。距離正則グラフにおいては,真空状態の他にギッブス状態を導入し,特にジョンソングラフに対して低温・高次数(無限体積)の極限描像を詳しく解析した。結果はマイクスナー多項式に付随する相互作用フォック空間を用いて記述され,生成・消滅作用素の組合せ論的構造を利用して興味深い極限分布を導き出した。 2.量子分解法によるグラフのスペクトル解析について,一般性を有する理論の構築を行った。相互作用フォック空間を特徴づけるパラメータと正則グラフの特性量の漸近的な値とのつながりを明らかにし,直交多項式やグリーン関数(コーシー変換)の方法を用いて,個々のスペクトル極限の計算を包括する形で極限分布を系統的に整理した。この項の成果は,東北大学の尾畑伸明氏との共同研究と密接に関わっている。 3.対称群の表現の漸近挙動の1つとして,既約指標とプランシェレル測度に対するケロフの中心極限定理の量子化・精密化を行った。結果は相互作用フォック空間の枠におさまらないものであり,通常のヤンググラフを変形して生成・消滅作用素を導入した。
|