研究概要 |
今年度は昨年度に引き続き、局所体上の双曲的曲線が良い還元を持つかどうかが、その曲線のp進エタール基本群から自然に生じるp進ガロア表現がクリスタル表現であるかどうかということにより判定できるかという問題をp進的に考察するために必要な対数的p進解析幾何の基礎理論の研究を進めた.対数的p進解析幾何は底空間が一点の場合は本研究者自身により定式化されているが,今年度の研究によりそれが相対的な場合にも拡張できることがわかってきた.特に以前証明した対数的収束コホモロジーとリジッドコホモロジーとの比較定理の相対化およびある種の一般化が得られ,また証明も見やすくなることがわかった.この相対的なp進解析幾何の理論により相対的な(対数的)リジッドコホモロジーの性質を調べ,当初の問題に応用することが今後の目標である.この結果に関する論文は現在準備中である.また,関連する話題として,東京電機大の中島幸喜氏との共同研究により正標数の平滑な開多様体の族の相対的クリスタルコホモロジーに対する重み篩の理論を構築した.重要な点はクリスタル景の中でクリスタル消滅輪体層に重み篩を導入することで,これにより重み篩の関手性を容易に得ることが出来る.退化する多様体の族にたいしても同様の理論を構築することが今後の課題である.また,対数的ホッジ・ヴィットコホモロジーというp進的なコホモロジー理論に対するGersten型予想およびpurityを任意の正標数のexcellent正則スキームに対し証明した.
|