• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

3次元多様体上の幾何構造とその変形

研究課題

研究課題/領域番号 13740038
研究種目

若手研究(B)

配分区分補助金
研究分野 幾何学
研究機関京都大学

研究代表者

藤井 道彦  京都大学, 総合人間学部, 助教授 (60254231)

研究期間 (年度) 2001 – 2002
研究課題ステータス 完了 (2002年度)
配分額 *注記
2,100千円 (直接経費: 2,100千円)
2002年度: 1,000千円 (直接経費: 1,000千円)
2001年度: 1,100千円 (直接経費: 1,100千円)
キーワード双曲多様体 / 錐多様体 / 幾何構造の変形 / 調和ベクトル場 / 確定特異点 / 常微分方程式 / 超幾何函数 / 合流
研究概要

本研究では、特異点集合Σが単純閉曲線S^1と同相となる成分のみをもつ、3次元双曲錐多様体Mの変形を解析することを目的としている。特に錐角αを微小に変えるようなMの微小変形を具体的に記述することをめざしている。そこで、そのようなMの微小変形を記述する際に鍵となる特異点集合の近傍における調和ベクトル場の具体的記述が求められる。今年度の研究では、錐角αが無限大に発散する場合の調和ベクトル場の退化の様子を詳しく解析し、退化した場合の調和ベクトル場のGaussの超幾何函数による表示を得ることができた。また、錐角αが0に収束する場合に、調和ベクトル場の方程式に対応するFuchs型の常微分方程式の解析をすることによって、双曲錐多様体からカスプをもつ多様体をつくり出すという操作がFuchs型の常微分方程式の確定特異点の合流操作と相当するという事実も発見した。
また、このような調和ベクトル場のGaussの超幾何函数による表示は、ある6階の常微分方程式の微分作用素をRiemannのP-微分方程式の微分作用素を用いて表わすことによって得られる。この方法を一般の3点0、1、∞を確定特異点とするFuchs型の高階の常微分方程式にも適用できるように開発した。その解法のアルゴリズムは学術雑誌に掲載されることに決まった。

報告書

(2件)
  • 2002 実績報告書
  • 2001 実績報告書
  • 研究成果

    (2件)

すべて その他

すべて 文献書誌 (2件)

  • [文献書誌] M.Fujii: "An algorithm for solving linear ordinary differential equations of Fuchsian type with three singular points"Interdisciplinary Information Sciences. 9・1(未定). (2003)

    • 関連する報告書
      2002 実績報告書
  • [文献書誌] M.Fujii: "On Strong convergence of hyperbolic 3-cone-manifolds whose singular sets have uniformly thick tabular neighborhoods"Journal of Mathematics of Kyoto University. 41・2. 421-428 (2001)

    • 関連する報告書
      2001 実績報告書

URL: 

公開日: 2001-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi