研究課題/領域番号 |
13740047
|
研究種目 |
若手研究(B)
|
配分区分 | 補助金 |
研究分野 |
幾何学
|
研究機関 | 大阪市立大学 |
研究代表者 |
望月 拓郎 大阪市大, 理学(系)研究科(研究院), 助手 (10315971)
|
研究期間 (年度) |
2001 – 2002
|
研究課題ステータス |
完了 (2002年度)
|
配分額 *注記 |
2,100千円 (直接経費: 2,100千円)
2002年度: 700千円 (直接経費: 700千円)
2001年度: 1,400千円 (直接経費: 1,400千円)
|
キーワード | 代数多様体 / トポロジー / quot scheme / r-spin curve / Hilbet scheme / Heisenberg algebra / moduli / Chow group |
研究概要 |
主として次の三つのmoduliについての研究を行った。 (1)代数曲面より得られるquote schemeのcohcmology ringの計算 (2)stable r-spin curveのmoduliのvirtual class (3)parabolic Hilbert schemeの位相的性質 (1)代数曲面C上のtrivial locally free sheafの長さが有限のquotientのmoduli schemeはsmooth varietyになる。また自然なtorus actionが入り、その不動点集合はいくつかのCの対称積の直積になる。このようにとても調べやすい性質を持っている具体的な例について詳細に調べておくことは、今後の数学の発展にとって有意義であると考えられる。この研究ではquote schemeのcohomology ringの構造を調べた。そのためにquot schemeだけでなく、より扱いやすいfiltrationのmoduliを導入し、一種のsplitting principleを得ることで、quot schemeのcohomologyのある種の極限をとったものの構造を完全に決定することができた。 (2)stable r-spin curveのmoduliの上に、ある種のよい性質を満たすcohomology classが存在することが予想されていた。その構成法も提案されていたが、実際にそのようにして得られるものが、よい性質をもっていることを確かめた。そのために用意した議論のうちのいくつかはこの問題への本質的な寄与であると思われる。 (3)parabolic Hilbert schemeというものを導入した。これは、parabolic structureを与えられたideal sheafのmoduliである。特にsmooth algebraic surfaceのsmooth divisorにparabolic structureを持つ0-schemeのparabolic idealのmoduliとして得られるparabolic Hilbert schemeを考えると、これがsmoothになることがわかる。そこで、0-schemeのHilbert schemeについて知られている結果の基礎的な部分を拡張した。特にpunctualなもののcell decompositionはこの素材の重要な基礎付けになるものと思われる。この結果を基にしてde Cataldo氏と共同でChow groupの計算を行った。またHilbert schemeの理論で大変興味深いNakajima theoryのparabolicの場合への拡張も行うことができた。
|