• 研究課題をさがす
  • 研究者をさがす
  • KAKENの使い方
  1. 前のページに戻る

非線形方程式に対する精度保証付き数値計算法に関する研究

研究課題

研究課題/領域番号 13780256
研究種目

若手研究(B)

配分区分補助金
研究分野 計算機科学
研究機関早稲田大学

研究代表者

中谷 祐介  早稲田大, 理工学部, 助手 (80318807)

研究期間 (年度) 2001 – 2002
研究課題ステータス 完了 (2002年度)
配分額 *注記
2,100千円 (直接経費: 2,100千円)
2002年度: 1,000千円 (直接経費: 1,000千円)
2001年度: 1,100千円 (直接経費: 1,100千円)
キーワード精度保障付き数値計算 / 非線形方程式 / Krawczykの方法
研究概要

計算機により数値計算を行う際に発生する誤差を考慮し,数学的に厳密な意味での解の誤差を検証することにより,得られた解の精度を保証する研究が,精度保証付き数値計算と呼ばれ近年活発に行われ,成果を挙げている.例えば線形連立方程式に関しては,IEEE標準754にもとづく浮動小数点演算を用いることで,n次元の方程式に対して2n^3/3の計算量で方程式の近似解を求めさらにその精度保証を行える,高速精度保証法が提案されている.
非線形方程式f(x)=0に関しては,解の存在を示す手法として,Krawczykの方法と呼ばれる有効な手法がある.この手法は,区間包囲による精度保証技法の代表的なものであり,導関数f´の区間包囲を利用し,簡易ニュートン反復に対して縮小写像の原理の成立を確かめる手法である.本研究は,このKrawczykの方法を用いて非線形方程式の解の存在検証を行う高速な精度保証付き数値計算法を確立することを目的として進めてきた.
Krawczykの方法により非線形方程式の解の存在検証を行う場合,解の存在検証を行う領域XからKrawczyk作用素K(X)を計算し,K(X)⊂Xの成立を確認することにより,解の存在性が示される.このとき,K(X)の計算には(行列)×(行列)の計算が現れるため,計算量が増大する原因となる.そこで,これを避けるために,ある行列Lを掛けたLK(X)を計算することにより線形連立方程式に帰着させ,これを前述の高速精度保証法により計算し,K(X)の値を求める.これにより,IEEE754にもとづいた浮動小数点演算を用いて精度保証を行うことにより,Krawczyk作用素K(X)をそのまま計算した場合の計算量が5n^3であるのに対し,本研究での手法では2n^3/3の計算量で済むことが示された.また,この手法を数値計算パッケージMatlabを用いて実装し,具体的な非線形方程式の解の存在検証を行い,その有効性を確認した.

報告書

(1件)
  • 2001 実績報告書
  • 研究成果

    (3件)

すべて その他

すべて 文献書誌 (3件)

  • [文献書誌] 中谷祐介: "非線形方程式に対する精度保証付き数値計算法"日本シミュレーション学会第20回シミュレーション・テクノロジー・コンファレンス発表論文集. 261-264 (2001)

    • 関連する報告書
      2001 実績報告書
  • [文献書誌] Yusuke Nakaya: "Numerical Verification of Solution for a System of Nonlinear Equations"Proceedings of 2001 International Symposium on Nonlinear Theory and its Applications. Vol.1. 235-238 (2001)

    • 関連する報告書
      2001 実績報告書
  • [文献書誌] 中谷祐介: "変数分離形非線形方程式の解の非存在の厳密な数値的検証法と全解探索への応用"電子情報通信学会論文誌. Vol.J84-A, No.11. 1377-1384 (2001)

    • 関連する報告書
      2001 実績報告書

URL: 

公開日: 2001-04-01   更新日: 2016-04-21  

サービス概要 検索マニュアル よくある質問 お知らせ 利用規程 科研費による研究の帰属

Powered by NII kakenhi