研究課題/領域番号 |
13J06631
|
研究種目 |
特別研究員奨励費
|
配分区分 | 補助金 |
応募区分 | 国内 |
研究分野 |
幾何学
|
研究機関 | 東京大学 |
研究代表者 |
川崎 盛通 東京大学, 数理科学研究科, 特別研究員(DC1)
|
研究期間 (年度) |
2013-04-01 – 2016-03-31
|
研究課題ステータス |
完了 (2015年度)
|
配分額 *注記 |
3,000千円 (直接経費: 3,000千円)
2015年度: 1,000千円 (直接経費: 1,000千円)
2014年度: 1,000千円 (直接経費: 1,000千円)
2013年度: 1,000千円 (直接経費: 1,000千円)
|
キーワード | ハミルトン微分同相群 / 共役不変ノルム / 制御された擬準同型 / 非可縮周期軌道 / heavy / 非可縮軌道 / 分裂ホーファー長 / 安定有界性 / シンプレクティック微分同相群 / 非交差配置 / 交換子長 / 安定非有界性 / 擬準同型 |
研究実績の概要 |
・前年度に重い部分集合を用いてハミルトン・イソトピーの周期点を検出する方法について研究したが、これについて幾つか進展があった。 そのうち一つとして、前年度の研究について一部の論証にミスを発見したが、それをシンプレクティック多様体の単純性の仮定を課すことにより解決した。他には周期点の存在の代わりに不変速度の存在を結論と変えた場合に仮定を安定非交叉配置不能性まで緩められることを発見した。逆の方向で非交叉配置可能ならば周期点のないハミルトン・イソトピーを構成するという研究についても幾つかの応用例を発見した。このように周辺状況がかなり明らかになったことにより、昨年度得られた主結果への理解が深まることとなった。 ・前年度のBavardの双対定理を共役不変ノルムに拡張する研究についても進展があった。前年度の研究にも書いたが、これは共役不変ノルムと制御された擬準同型との間の双対定理である。 前年度の研究について参考にした先行研究の一部にギャップがあり、それにより本研究について一部ギャップがあることを発見した。これについては超極限を用いずにある極限の存在を示すことにより解決した。また、前年度の段階では完全群にのみ適用可能な形だったが、完全でない群にも適用可能な形に修正することができた。更に群が閉シンプレクティック多様体のハミルトン微分同相群だった場合に、本研究とポルテロヴィッチの定理を応用して安定非交叉配置不能性から制御された擬準同型の存在がいえることを確認した。これらの進展により本研究の意義がより明らかになった。
|
現在までの達成度 (段落) |
27年度が最終年度であるため、記入しない。
|
今後の研究の推進方策 |
27年度が最終年度であるため、記入しない。
|